
Introduction
Rubicon is a powerful database search engine that benefits the end user, the developer,
and the network manager. Rubicon provides native Delphi support as well as 16 and
32 bit DLL versions.
The Rubicon technology allows the end user of an application to perform searches for
words or phrases using wildcards, to apply And, Or, Not, Near, and Like logic to the
search, and the ability to iteratively narrow or widen the search without regard to the
underlying database or field structure. Best of all, the search results are returned just
as fast as a keyed search regardless of field type or the location of the word or string in
the field.
From a developers standpoint, Rubicon encapsulates this robust search technology in a
set of three straightforward native Delphi VCL components that build indexes, update
indexes, and execute searches, respectively. Rubicon dramatically reduces the
complexity associated with searching highly normalized tables and tables containing
blob data. All the components are entirely written in Delphi and are compatible with
Delphi 1.0 and 2.0. Paradox for Windows can access the Rubicon DLL's via the
RUBICON.LSL interface.
Rubicon performs all searches at keyed index-like speeds by building a single Rubicon
table that indexes all the words in the source table(s) and their locations. This means
that most Rubicon searches never read the source table(s), an important consideration
in secure environments. Reads and writes against this table are further minimized by
built-in compression technology. For a stand alone users perspective, this speeds up
the entire search process. For network managers, this means that the search
minimizes the use of network bandwidth and both client and server CPU cycles. And
by building Rubicon indexes during off peak hours, the network manager can further
free up precious peak period network resources.

Delphi Installation
To install Rubicon into the component palette:

1. Create a new directory (e.g. d:\rubicon)
2. Unzip the files in the new directory
3. Delphi 1.0 trial run users unzip TARB16TR.ZIP and ST16TR.ZIP while Delphi

2.0 trial run users should unzip TARB32TR.ZIP and ST32TR.ZIP Registered
users should unzip ST16.ZIP or ST32.ZIP for Delphi 1.0 or Delphi 2.0,
respectively.

4. (Optional - registered users only) Using a text editor, modify TARUBICN.INC per
the instructions contained within TARUBICN.INC

5. (Recommended) Backup COMPLIB.DCL or CMPLIB32.DCL
6. Start Delphi, select Options|Install Components (Delphi 1.0) or Components|

Install (Delphi 2.0)
7. Click the Add button, then the Browse button and locate RUBICON.PAS in your

new directory
8. Select it
9. Press OK in the Install Components dialog and wait for the Library to rebuild
10. (Trial run users) Programs can now use Rubicon while Delphi is running

Rubicon is now available in the Data Controls palette. See Using the Delphi
Components to see how a simple application is put together.
To install the on-line help:

1. RUBICON.HLP and RUBICON.KWF should be in the same directory as
TARUBICN.DCU

2. If Delphi is running, shut it down
3. (Recommended) Backup \DELPHI\BIN\DELPHI.HDX
4. Run \DELPHI\HELP\HELPINST
5. File|Open \DELPHI\BIN\DELPHI.HDX
6. If any existing KWF files are "not found", then add the appropriate search paths

by selecting Options|Search Path
7. Select Keywords|Add File menu choice and select d:\RUBICON\

RUBICON.KWF
8. File|Save
9. Exit the program
10. Check the WINHELP.INI file in the Windows directory and be sure that this entry

is included: rubicon.hlp=<fullpath> where <fullpath> indicates the
location of the help file

The Rubicon help file is now installed.

Paradox Installation
1. Create a new directory (e.g. d:\rubicon)
2. Unzip the files in the new directory
3. Unzip FILES16.ZIP or FILES32.ZIP depending on your platform (to use both,

create separate directories for each)
4. Copy RBCNB16.DLL and/or RBCNB32.DLL to your \windows\system directory

Using the Delphi Components
A simple application using TMakeDictionary and TSearchDictionary requires the
following steps:

1. Open a new application
2. Add a TTable (Table1) , connect it to BIOLIFE.DB in DBDEMOS, and set the

Active property to True
3. Add a TDataSource (DataSource1) and set the DataSet property to Table1
4. Add a second TTable (Table2), set the DatabaseName to DBDEMOS, and

TableName to 'Match'. Do not try to set Active to True! This table will later be
created by SearchDictionary1.

5. Repeat step 4 (creating Table3), but set TableName to 'Words'. This table will
later be created by MakeDictionary1.

6. Add another TDataSource (DataSource2) and set the DataSet property to
Table2

7. Add a TDBGrid (DBGrid1) and set the DataSource to DataSource2 (the grid will
be empty until we run the application and press the 'Search' button)

8. Add a TMakeDictionary (MakeDictionary1) and a TMakeProgress to the form,
set DataSource to DataSource1 and WordsTable to Table3

9. Add a TSearchDictionary (SearchDictionary1) to the form, set the Builder
property to MakeDictionary1, and set MatchTable to Table2. Be aware that
whenever the Builder property is used, many of the properties in the Object
Inspector become read only. See the Builder property in the reference section
for a complete discussion of this behavior.

10. Add a TButton (Button1) to the form, set the caption to 'Make', double click on
the button and add the following code: MakeDictionary1.Execute

11. Add a TEdit (Edit1) and clear the Text property
12. Add a second TButton (Button2), set the Caption to 'Search', double click on

the button and add the following code:
SearchDictionary1.Search(Edit1.Text)

13. Run the application and press the 'Make' button.
14. Move to Edit1 and enter 'sea'
15. Press the 'Search' button and six records appear in the grid. For most of the

records, the word 'sea' is in the memo field (you may want to add a TDBMemo
control to the form to make this Notes field visible).

16. Close the application, click on the MakeDictionary1 icon, double click on the
DataTypes property, and set dtMemo to False

17. Repeat steps 13 - 15, but this time only one record is selected because the
Notes field is no longer part of the dictionary

This example uses all the essential properties of these two components
(TUpdateDictionary is very similar to TMakeDictionary). Properties next in importance
would include IndexMode (common to all three components), SearchLogic
(TSearchDictionary), and RankMode (TSearchDictionary).
While there are many other properties, the default values should suffice in the majority
of situations.

Using the DLL (Paradox for Windows)
Rubicon for Paradox includes several examples of how to use the DLLs in a Paradox
form:

· EXMAKE.FSL demonstrates how to use RBCNMAKE.LSL (32 bit only) and
RUBICON.LSL to build a dictionary using library methods and direct API calls

· EXSEARCH.FSL demonstrates how to use RBCNSRCH.LSL (32 bit only) and
RUBICON.LSL to search a dictionary using library methods and direct API calls

· EXNAV.FSL demonstrates how to perform a search and then navigate from
matching record to matching record.

· EXUPDATE.FSL demonstrates how to perform updates
· RBCNDEMO.FSL is a comprehensive demo (Version 7 16/32 only)
· TEMPLATE.FSL is a convenient way for 16 bit Paradox users to access the DLL

as it contains all the constants, types, and uses statements needed (see
discussion below)

The example forms are discussed in more detail below. RBCNDEMO.FSL is discussed
in the Demo Program section. You may wish to use the CodeView utility to browse
the source code of the examples. See Utility Programs from more information on
CodeView.
The example forms (those starting with EX) are designed to be used with Paradox
tables, while the comprehensive demo may be used with any table type.
Paradox 7 32 bit users need only include the following code in a form's uses section to
gain full access to all RUBICON.LSL constants, types, methods, and uses statements
(this feature is referred to as extended uses syntax):
uses ObjectPAL
 "Rubicon.lsl"
 "RbcnMake.lsl" ;// optional
 "RbcnSrch.lsl" ;// optional
 "RbcnUpdt.lsl" ;// optional
endUses
The optional libraries above provide a simpler interface for 32 bit developers by
eliminating the Handle argument in the calling convention:
 libRubicon.setProperty(hMake, rblMinWordLen, 3)
becomes
 libRbcnMake.setProperty(rblMinWordLen, 3)

The only limitation is that the form can only work with one instance of the object at a
time.
Because 16 bit developers do not have access to the extended uses syntax, all copies
of all the needed constants and methods must be placed in the target form.

TEMPLATE.FSL simplifies this by providing a blank form that already includes all the
constants, methods, etc., needed to develop a Rubicon application. Edit the form's
open method to enable one or more of the three predefined handles, hMake, hSearch,
and/or hUpdate.
If you are adding Rubicon to an existing 16 bit form, just copy the type, const, and uses
sections from TEMPLATE.FSL to your form. You may also want to use the code in the
open and close methods to allocate and deallocate handles.
The only differences between the 16 and 32 bit versions of the examples is that the 32
bit versions rely on the extended uses syntax. The 32 bit version references DLL
routines with the STDCALL calling convention.
The table designated as the WordsTable may not be part of the form's data model. If
your application is getting a 'table is busy' error, make sure your data model does not
contain a conflicting table. The routine

rbiOpenTest(TableName String) LongInt
may be useful in determining which table is causing the conflict. If the routine returns
zero, it was unable to open the table. If it returns 1, it was successful.
EXMAKE.FSL: Like all the other examples, this form is designed to work with Paradox
tables. Simply enter a source table using either a path name or alias and press one of
the buttons to build the Rubicon dictionary. All the fields in the table will be included in
the dictionary. Except for the Make Using RBI Calls button, the form will enumerate
and display all the component's properties and will also use MAKEPROG.FSL to display
its progress. Examine the code in each button's pushButton event to see how the
component is initialized and executed.
EXSEARCH.FSL: After having run EXMAKE.FSL, use the same table (remember to
include a path or alias) in this form to search for specific words. You may enter more
than one word to search for. This example uses slAnd search logic (explained in more
detail later) and creates and displays a match table.
EXNAV.FSL: This form demonstrates how to navigate through a table from one
matching record to another. Use it the same way as EXSEARCH.FSL. When using
the trial run DLL, the number of times you can move from record to record is limited
during a given search.
EXUPDATE.FSL: This form shows how to use the update component and uses the
messages.db table. First press the Make button to build the dictionary (this may
overwrite the tables uses by the other examples). Only the fields Forum, Topic, and
Message are included in the dictionary (see the form's Open event to see how the
components are initialized). Next you may perform some searches (the search logic is
set to slExpression, so you may use AND, OR, NOT, etc.). Then you may add or
change records and check that the search engine recognizes the changes (If you delete
a record, the dictionary will be invalidated since the index mode is imSeqNo). Use the
Actions button to see recent action events and the Info button is review all the
component's properties. The updating process is performed in the TableFrame's action
event.

TMakeDictionary Component
Properties Methods Events Tasks See also
The TMakeDictionary component is used to scan the records of the DataSet specified
by the DataSource property. The component compiles a dictionary of all the words
used in the selected fields and their record locations in the table.
Use the Execute method to build the dictionary. This is a two phase process. During
the first phase, the records are read and an in-memory dictionary of words and record
positions is built. This is a memory intensive operation and there are several properties
described below to help control resource consumption. The second phase writes the
dictionary to the table specified by the WordsTable property. If the WordsTable table
does not exist, it is created. If it does exist, it is deleted and recreated. During phase
two, memory used in phase one is released.
You can control which fields are included in the dictionary several ways: use the field
editor to select fields, use DataTypes/FieldTypes to filter which fields are processed,
and by using the FieldNames property. Note, that these methods of restricting field
processing use AND logic: the field must be in DataSource.DataSet.Fields, it must
pass the DataTypes/FieldTypes filter, and if the FieldNames list is not empty, the
FieldName must be in FieldNames.
TMakeDictionary provides build-in support for the following field types: ftString,
ftSmallInt, ftInteger, ftWord, ftBoolean, ftFloat, ftCurrency, ftBCD, ftDate, ftTime,
ftDateTime, ftAutoInc (Delphi 2.0), and ftMemo. The OnProcessField event can be
used to provide custom handling for all other field types.
Numeric fields generally are not good candidates for inclusion in the dictionary unless
there are a fairly limited number of values and/or the user is likely to search for specific
values.
String and memo fields are most commonly used to build a dictionary. Unlike numeric
and date/time fields, TMakeDictionary has to break these fields in to separate words
and uses the WordsDelim property to identify word separators. Short words can be
excluded by using the MinWordLen property.
You may explicitly identify words to omit from the dictionary by using the OmitList
property. After the build, you may also delete records from the WordsTable.
By default, all words are converted to upper case using the SysUtils.UpperCase
function. This behavior may be overridden by setting the UpperCase property.
There are several methods that TMakeDictionary can use to keep track of where the
word appears in the DataSource. This is controlled by the IndexMode property.
Use the OnPhaseOne and OnPhaseTwo events to monitor the progress of the process.
The properties BlobBytesWritten, CacheCount, DiskInserts, MaxMemUsed,
MemCompression, MemoryUsage, RecordNo, and State are useful indicators of
execution. These events may also be used to abort the process.
Resource usage can be controlled by using the FileCompression, MemoryLimit, and
RecordLimt properties. WordFieldSize, LikeFieldSize, and BlobFieldSize can be used
to define the Word, Likeness, and BlobData fields in the WordsTable. KeyViolName

specifies the key violation table name. Key violations usually result because of a too
small WordFieldSize.
The OnProcessField event can be used to customize the filtering of fields, words, and
parsing of strings to words and handle field types not supported by TMakeDictionary
(ftUnknown, ftBytes, ftVarBytes, ftBlob, ftGraphic, ftFmtMemo, ftParadoxOle,
ftDBaseOle, ftTypedBinary). Within this event, you may use ProcessField, ProcessList,
ProcessPChar, and ProcessWord methods.

TSearchDictionary Component
Properties Methods Events Tasks See also
The TSearchDictionary component is used to search the dictionary specified by the
WordsTable property by using the Search, NarrowSearch, and WidenSearch methods.
These methods take a string argument, S, that may be a single or multiple word(s)
separated by delimiters defined by the WordDelims property. Alternatively, the
SearchMode and SearchFor properties and the Execute method may be used to
conduct a search.
The type of search is controlled via the SearchLogic property which specifies slAnd,
slOr, slNot, slNear, slLike, slPhrase ,and slExpression (see Expression Evaluation)
logic. Wildcards may be used and are defined by the AnyChar and OneChar
properties.
The MatchCount and RecordCount properties provide a numerical indicator on the
success of the search. MatchCount reports how many words were located in the
WordsTable , while RecordCount reports how many records met the search criteria.
When using wildcards, it is often useful to see the words that actually matched the
search pattern. To generate this list, use the MatchingWords method (this method may
also be used when wildcards are not used).
The MatchTable property can be used to create a result set of matching records. For
many searches the only time that the DataSource is ever read by TSearchDictionary is
during the creation of the MatchTable. The order of the records in the MatchTable is
controlled by the RankMode property. The number of records added to MatchTable
may be limited with the RecordLimit property.
The FindFirst, FindNext, FindPrior, FindLast, and Matches method can be used to
locate matching records in the DataSource and manage filters.
There is no need for TSearchDictionary to be paired with TMakeDictionary in the same
application. If they are paired together in the same application, use the Builder
property to ensure that all the common properties are synchronized. If they are not
paired together, then the following properties must be set to the same values used to
build the dictionary: DataSource, DataTypes/FieldTypes, FieldNames, IndexMode,
Likeness, MinOrdIndex, OnProcessField, StrictChecking, UpperCase, WordDelims, and
WordsTable.
The WordsTable does not contain any information regarding which field(s) a word
originated from, only that a word is associated with a record. This is usually not a
problem unless you want to exclude a field(s) from a search that is already part of the
WordsTable. To do this, use the SubFieldNames property.
TSearchDictionary ignores searches on words that have a length less than MinWordLen
(unless it includes an AnyChar wildcard) or is in the OmitList.
Unlike TMakeDictionary, TSearchDictionary is not memory intensive. In fact, because
of its architecture and compression options, it makes relatively small demand on
resources (CPU and network) at the time the search is conducted.
You may elect to cache search results so that searches for the same word do not result

in any disk or network activity. Simply set the MemoryLimit property to the amount of
memory you wish to devote to caching. If the WordsTable is being updated while
searches are being conducted, then search caching should not be enabled.
Indicators of resource consumption include BlobBytesRead, CacheReads, DiskReads,
MaxMemUsed, MemoryUsage, and State. Search progress may be monitored with the
OnSearch event.
Searches against the dictionary may not be performed during a build or update.

TUpdateDictionary Component
Properties Methods Events Tasks See also
The TUpdateDictionary component may be used to keep the WordsTable synchronized
with its DataSource. Alternatively, the WordsTable may by kept synchronized by simply
rebuilding the table with TMakeDictionary. The tradeoffs of these two approaches is
discussed in the next section.
For TUpdateDictionary to work, it needs to be notified when DataSource has a record
deleted, inserted/appended, and edited. This is accomplished by adding the
TUpdateDictionary routines AfterDelete, AfterPost, BeforeDelete, BeforeEdit, and
BeforeInsert into the DataSource.DataSet events of the same name.
The choice of index modes plays a large part in determining the applicability of
TUpdateDictionary to a DataSource. The best choice of IndexMode is imOrdinalIndex
because it has the fewest restrictions, while imRecordNo and imSeqNo are limited to
edits and appends (no insertions or deletions).
Updating a dictionary that has a low WordFieldSize property can lead to false additions
to and deletions from the dictionary. For instance, if the word 'conglomerate' is added
to a dictionary with WordFieldSize set to 11, it is entered as 'conglomerat'. An attempt
to add 'conglomeration' would incorrectly associate it with 'conglomerat'.
Performance can be improved by allocating memory for caching. This is controlled by
the MemoryLimit property. The cache memory stores records that have already been
read. By setting the DelayedWrites property to True, writing records to disk is
postponed until a call to FlushCache, Free, or WriteCache. Searches against the
tables should not be conducted while DelayedWrites are enabled unless steps are
taken to write the cache immediately before a search.
Resource usage and performance may be monitored with the following properties:
BlobBytesRead, BlobBytesWritten, CacheEdits, CacheInserts, CacheReads,
DiskDeletes, DiskEdits, DiskInserts, DiskReads, MaxMemUsed, MemCompression,
MemoryUsage, and State. Statistics may be reset with the ResetStats method.
As with TSearchDictionary, TUpdateDictionary must use the same values for
DataSource, IndexMode, Likeness, MinOrdIndex, StrictChecking, OmitList, UpperCase,
WordDelims, and WordsTable as were used with TMakeDictionary to originally build the
WordsTable. Additionally, TUpdateDictionary must have the same values for
DataTypes/FieldTypes, FileCompression, FieldNames, and OnProcessField as
TMakeDictionary. It is your responsibility to ensure this. If TUpdateDictionary is in the
same application as TMakeDictionary, use the Builder property to automatically
synchronize these properties.

TMakeDictionary versus TUpdateDictionary
Appearing below is a table summarizing the relative merits of TMakeDictionary versus
TUpdateDictionary.

TMakeDictionary TUpdateDictionary
Purpose Processing large numbers of

records
Process one update at a time

Memory
Usage

High Low
Caching increases usage

Speed Per
Record

Fast memory based Slow disk based
Caching improves performance

Speed To
Update One
Record

Slow must process all
records

Fast only processes one
record

Speed To
Update Many
Records

May be faster than update
depending on the scope of
changes

May be faster than make
depending on the scope of
changes

Speed To
Update All
Records

Fastest Much slower if caching disabled

IndexMode
Limits

None Best suited for imOrdinalIndex
imRecordNo & imSeqNo limited
to appends and edits

If the database is updated in a batch mode (e.g. overnight updates), then
TMakeDictionary is probably the appropriate choice if the number of changes is
substantial.
If the database is continually updated and the end user needs to be able to locate even
the most recent changes, then TUpdateDictionary must be used.
Keep in mind that careful database design can minimize or eliminate the need for
updating the dictionary. For instance, a parts database may consist of descriptions,
inventories, and orders. While the inventories and orders portions of the database are
going to be subject to frequent updates, the parts descriptions are probably relatively
static. Thus, if the dictionary is created just on part descriptions, then the need to
dynamically update the dictionary is minimized.

Index Modes
The index mode describes how the link is maintained between the words in the
dictionary and the locations of the words in the search table. There are four index
modes described below. See also Search Strategies for information on how the index
mode affects global searches.

imOrdinalIndex
· Best choice when a primary or unique secondary key consisting of a single

ordinal field is available
· When the StrictChecking property is False, this mode may be used with

floating point fields as long as there are no fractional values (this is not checked)
· Available for all table types
· Scales easily to SQL
· Most compatible with dynamic updating
· Works well with filters
· Table must be open on the index containing the ordinal index field unless

IndexFieldName is set
For best results, the index value should be sequential or nearly sequential (e.g.
CustomerNo should be 1001, 1002, 1003 rather than 1010, 1020, 1030). Gaps created
by record deletions are not a problem. It makes no difference whether the first (or
lowest) index value is 1 or 100000. New records must not have an index value lower
the first record when using TUpdateDictionary unless MinOrdIndex was used during the
building of the dictionary.

imRecordNo
· Available only for dBase tables
· Use this option if you cannot use an imOrdinalIndex
· No range limits may be in place
· Only compatible with dynamic updating under certain restrictive conditions (only

appends and edits allowed, no insertions permitted)
· Works poorly with filters
· Table may not be packed after the creation of the dictionary (dBase only)

imSeqNo
· Available only for Paradox files
· Same restrictions as imRecordNo
· No deletions are permitted
· During searches and updates, the table must use the same index used when

the dictionary was created

imNone
No index available. None of the components will work with tables that have this
IndexMode. You must either switch to another index and reset the IndexMode or
create a compatible index.

Search Strategies
Searches are conducted against the words in the dictionary and are by default not case
sensitive. The dictionary does not keep track of which field(s) the word was obtained
from. This means that a search for the word 'green' could find records that contain 'Mr.
Green' in the Name field, '125 Green Street' in the Address field, and 'Green Acres' in
the City field.
While not requiring the user to specify individual fields to search is generally a plus,
there may be instances when the search should be restricted to a subset of fields. In
these cases, there are two options: one is to construct a second dictionary that is
limited to the subset of fields. The limitation here is that the subset would need to be
known ahead of time so that the dictionary could be pre-built (for small databases, this
may not be an issue).
The second option would be to use SubFieldNames property to limit a search to a
subset of the fields represented in the WordsTable. Using SubFieldNames forces the
search to read the DataSource during each search. The only records read are those
that match the search criteria before applying SubFieldNames. During the reading
process, the SubFieldNames are checked to see whether they match the search criteria
too.
The choice of IndexMode can have an impact on some global searches. To illustrate
the problem, consider that a search for '*' using slOr logic should find every record.
Conversely, a search for '*' using slNot logic should return no records. However, the
slNot search will return a positive RecordCount when an imOrdinalIndex is used and
there are gaps between index values. The records that are 'found' are really just the
gaps in the index values. Since these 'records' do not really exist, a call to
CreateMatchTable will return an empty table. To avoid this problem, slNot logic should
not be used to begin a new search, only to narrow an existing search (try a slOr Search
on '*', followed by a slNot NarrowSearch this will result in zero records found).
The UpperCase property can be used to override the default case conversion function.

Expression Evaluation
Version 1.10 of Rubicon introduced an new SearchLogic type, slExpression. Using
slExpression, searches may take the form of:

windows
like windows
windows and driver and not video
windows near driver or "sound card"
(window* and driver) or (sound and card?)

slExpression allows the use of these familiar operators that are evaluated in the
following precedence (highest appear first)

like, near
not
and, or

The syntax for these operators is
like <string>
<string> near <string>
not <expression>
<expression> or <expression>
<expression> and <expression>

where
<string> is a string or wildcard (e.g. windows, window*)

<expression> is a <string>, another operator, or parentheses enclosing an
 expression
Appearing below are some common mistakes:

Mistake Solution
(windows or driver) near
video

windows near video or driver
near video

like (problem or
corruption)

like problem or like corruption

like 'delphi' like delphi
like "borland delphi" none
windows or driver not
video

windows or driver and not video

windows driver windows and driver

Other common errors include not matching quotes (which may be paired single or
double quotes) or parenthesis. When there is a syntax error, ErrorPos contains the
approximate location of the error.
The following expressions are equivalent:

windows and driver near
video

windows and (driver near
video)

windows or driver and not
video

(windows or driver) and not
video

windows and driver and
video

((windows and driver) and
video)

The expression evaluator does not attempt to optimize the expression. This only
becomes significant with searches using NEAR or phrases because these searches
require reading the DataSource.

Working with Link, Lookup, or Normalized Tables
Performing a text search on a set of linked tables generally requires searching a field in
a lookup table, grabbing its index value, returning to the master table, changing the
index, finding the index value, etc., etc. Now try performing a complex multi-field
search!
Rubicon for Delphi eliminates this complexity by allowing you to build the dictionary with
a DataSource that contains all the lookups. Just use the Delphi field editor to define
the relationships and process the table with TMakeDictionary, TSearchDictionary,
and/or TUpdateDictionary. Now you can search for any word in any field regardless of
whether the field is in the master table or in a detail table.
Rubicon for Paradox can create linked tables by using the addLookupField method
described in the Paradox Interface section.

Working with SQL Tables
When working with SQL tables, the IndexMode must be imOrdinalIndex. In order to
perform all operations, Rubicon needs to calculate the difference between the minimum
and maximum index values. This requires that a call be made to TTable.First and
TTable.Last. On local tables, these operations are fast, but can be very slow on large
SQL tables. There are two ways to improve performance.
In order to avoid moving to the first record, set MinOrdIndex to a value equal to or lower
than the minimum index value when the WordsTable is built with TMakeDictionary. The
same value for MinOrdIndex must be used to perform all subsequent updates and/or
searches.
Moving to the last record can be avoided for searches by setting the SourceRange
property to a value equal to or greater than the difference between the maximum and
minimum index values. If MinOrdIndex is being used, MinOrdIndex plus SourceRange
must be greater than or equal to the maximum index value.
Using MinOrdIndex and SourceRange with SQL tables turns off some internal integrity
checks (thus avoiding the calls to First and Last), so these values must be set carefully.

Working with Huge Tables
When working with huge tables, you should

· Perform a test build by setting RecordLimit to about 4000 records, then inspect
the WordsTable to see if there are any obvious characters and/or words which
should be excluded from the build

· Shut down all other applications
· If possible, use a 32 bit version of the application
· Set MemoryLimit equal to the amount of physical RAM minus four megabytes

(later, you may wish to experiment with this setting it is not a hard and fast
rule!)

· If using the 32 bit version, be sure AltMemMgr is set to True (Delphi only)
· See TARUBICN.INC for other performance options (Delphi only)

16 vs. 32 Bit Memory Issues
Memory is only an important factor for TMakeDictionary because all of it's basic
operations occur in memory. TSearchDictionary and TUpdateDictionary require
relatively little memory (to search a one million record search table would require less
than 300kb of memory), however performance will benefit if additional memory is made
available to cache indexes.
While Rubicon is compatible with both the 16 bit and 32 bit memory models, large
tables builds are better suited to 32 bit environment. 16 bit applications requiring large
amounts of memory are at a disadvantage because of the 16 bit memory suballocator
(discussed in more detail below) and the 8192 global memory block limit (this is shared
among all running applications).
If you must build a large dictionary with a 16 bit application, you should:

· Shut down all other applications
· Use an efficient index mode
· Minimize the number of fields included in the dictionary
· For Delphi applications, set memory suballocator variables HeapLimit and

HeapBlock to 16384 and 65535, respectively
· Consider building the WordsTable on a 32 bit system and allow users to search

the table from 16 bit applications.
For both 16 and 32 bit applications, the amount of virtual memory required to build a
dictionary is approximately:
of unique words * (IndexRange + 1) * (1 - compression rate) / 8
The IndexRange is the difference between the lowest index (or MinOrdIndex) and
highest index values. When the IndexMode is imRecordNo or imSeqNo, the
IndexRange is the same as the DataSource.DataSet.RecordCount - 1. For
imOrdinalIndex, an inefficient index (one with gaps between index values) will result in
inefficient use of memory.
Applying the formula to a table composed of one million records and 5,000 unique
words using a imRecordNo or imSeqNo (or a very efficient imOrdinalIndex) IndexMode
and a 97% compression rate would require 18.75mb of virtual memory.
Since the amount of virtual memory available is not always clear, TMakeDictionary will
keep consuming memory as it needs it until it runs out. If you want to set an absolute
limit on the amount of memory available to the component, add an OnPhaseOne event
handler to monitor MemoryUsage and abort the process once the memory threshold
has been exceeded.
In addition, 16 bit applications are limited to blob sizes of 64k unless you write an
OnProcessField handler.

Delphi 2.0 Memory Fragmentation
Rubicon for Delphi caches and compresses indexes in memory in order to minimize
disk/network activity. In doing so, it is frequently disposing large blocks of memory for
small ones, or visa versa. Unfortunately, this pattern of behavior is the Achilles heel of
the 32 bit memory suballocator and eventually leads to massive memory fragmentation
which will grind the application (but not the system) to a halt.
Fragmentation usually does not become a problem unless the DataSource has more
than 50,000 records and 15,000 words. This is an approximate threshold, and will vary
with the amount RAM devoted to caching. The problem is most likely to affect
TMakeDictionary since it goes through the most compress and decompress cycles
during execution. TUpdateDictionary may be affected if a very large number of records
are updated during execution and caching is enabled. TSearchDictionary should not
be affected even if caching is enabled since the number or records cached is likely to be
very small.
Tools such as MemorySleuth 1.0 do not catch this bug. The Windows 95 System
Monitor will. You may use this tool to determine whether your application is being
affected by fragmentation. If SM shows memory use increasing even after the
component has reached its MemoryLimit and the performance of the application is
degrading, then fragmentation is the likely cause.
Fragmentation does not lead to a memory leak. All memory used by the components
are returned to the system when they are freed or done processing.
There are suggestions that Borland will release an upgraded System unit that will
include a fix for this problem.
Rubicon for Delphi 1.10 provides an alternative memory manager which works around
this bug. It uses an algorithm that is optimized to work with the TMakeDictionary
pattern of memory use. To use this option, the AltMemMgr compiler directive in
TARUBICN.INC must be enabled and the AltMemMgr property must be set to True.
This option does not replace the existing memory manager (i.e. it does not call
SetMemoryManager), but rather supplements GetMem and FreeMem.
Unlike TMakeDictionary, TUpdateDictionary has a much more unpredictable pattern of
memory use so it is more difficult to assure that the alternative memory manager will not
also defragment memory. If you are processing a large number of changes to a table
and are using caching, then you may wish to call FlushCache periodically.
The alternative memory manager eliminates the fragmentation problem by creating a list
of pointers available for reuse (a memory pool). When execution begins, this list is
empty and requests for memory are passed to GetMem. As execution proceeds, any
memory that is released is saved in the memory pool. Subsequent requests for
memory first check the memory pool to see if there is a pointer available of the
appropriate size. If one exists, it is used, otherwise GetMem is called.
When the alternative memory manager is used, MemoryUsage may exceed
MemoryLimit by a large amount. MemoryUsage is largely made up of the memory
used to hold data structures and memory pool. The MemoryLimit is compared to only

the portion of MemoryUsage that is actually holding data, and thus the memory pool
portion is excluded.

Performance Optimization
Performance can be optimized by:

· Use a 32 bit version of the application
· Narrowing the list of fields selected for inclusion in the index
· Use an efficient index (see Index Modes)
· Shut down all other applications
· Add more memory
· If you own SysTools, turn off the ThreadSafe compiler option (Delphi only)
· Enable the dbiWrite option in TARUBICN.INC if you are using Paradox, Local

InterBase, InterBase 4.0, or other servers that supports 32 bit integers (Delphi
only)

· For server based tables, build the WordsTable locally, then move it to a server
· Examine the underlying structure of the database to determine whether Rubicon

needs to be applied against the entire database or a just subset of the database
· See TARUBICN.INC for other performance options (Delphi only)

Utility Programs
Two utility programs are included with Rubicon for Delphi: Verify and Compare. Use
Verify to check the integrity of a WordsTable. If Verify reports any errors, the
WordsTable should be rebuilt.
Use the Compare utility to compare two WordsTables. Generally, two WordsTables will
only pass the Compare tests when they are exactly the same. WordsTables that have
different table types may pass the test if all the words consist of standard characters
(international characters may be treated differently by the table types and therefore
cause differences).
These utilities are available for DLL users. Contact Tamarack Associates.
Rubicon for Paradox includes a utility, CodeView.fsl, that displays the source code of
any form or library in a convenient manner. Enter the form or library's name in the
FSL/LSL edit box. Libraries must include the LSL extension. Press enter and the
source code will be displayed. Double click on the Object or MethodName titles to
change the sort order. Resize the form to increase the viewing area.

Demo Program
Delphi: To compile the demo program, open DEMO.DPR, load the BOLTS.ICO icon
(in Delphi 1 select Options|Project|Application|Load Icon, in Delphi 2 Project|Options|
Application|Load Icon), and turn break on exceptions off (Delphi 1 select Options|
Environment|Preferences, Delphi 2 Tools|Options|Preferences). Then press F9.
Paradox for Windows 7: Run the form RBCNDEMO.FSL, which closely matches the
Delphi demo (a compiled version is available on our web site which may be helpful to
users who do not have Paradox 7). There are some differences, but the instructions
below should be a very good guide. The sample search references the table
BIOLIFE.DB which you will not have unless you also own Delphi, so you will need to
substitute your own table.

Tables Tab

Alias
Select from the available aliases. For SQL aliases, you will be prompted for a
password.

Table
Select a table to search. Generally, you should select a table from the drop down list.
You may also enter the path + table name. This table is ReadOnly, so the demo
program only reads from the table.

Index
Select the index for the table. Usually the primary index is the appropriate choice.
See Index Mode discussion on the Configure Tab below.

Available Fields
Lists the available fields in the table.

Selected Fields
Lists the fields selected for inclusion in the search dictionary. Generally, you will only
want to include fields that are string (or char) and memo types and exclude numeric
fields.

Add Link
Create a link to another table (also called lookups or calculated fields).

Edit Link
Edit an existing link.

Build Tab

Statistics
Build statistics include elapsed time, word count (number of words in the dictionary),
memory usage, the table size, the blob field size, and compression rates.
Memory usage includes the vast majority of memory used by the application to build the

dictionary, but excludes some data structures.
The table size represents the amount of data written to the table and may not
necessarily correspond to the table size reported by File Manage or Explorer (after
packing a Paradox table, they are close, however). The table size excludes the blob
data which is reported separately.
The blob data size figure also may not correspond to the physical table size as it does
not take into account the physical structure of the table.

Tables
Specify the table names for tables created by the demo. The Words table holds the
words contained in the Search table. The table will be created in the alias specified in
the Table tab. The Key Viol. table is used to store any key violations. This will always
be a Paradox table and will be located in the path or alias specified in the edit box.
The File Compression checkbox compresses information inside the dictionary. This
option should be left on unless the table resides on a compressed disk drive that offers
superior compression to the build-in compression routines (this would be determined by
comparing the file size with and without the file compression option enabled). The
amount of blob data compression will vary with the frequency that a word appears in
multiple records (the more often it shows up, the less compression achieved), but
compression rates of 95% or more are not unusual.

Word Delimiters
These characters define the beginning and end of a word. Control characters can be
entered as ^M and ^J. To enter a ^, use ^^.
The most common delimiters are spaces, commas, and periods. You will probably
want to include other punctuation (colon, semi-colon, double quotes, single quotes,
question marks, exclamation marks), parentheses, braces, brackets, and
mathematical symbols.
Whether you want to include any of these @#$%&\~ depends on your database.
In some instances, you may consider using numbers as word delimiters. This will
effectively eliminate all numbers from the dictionary.
Be aware that the period delimiter causes havoc with numerical values embedded in
string or memo fields: a number like '19.95' would become two words: '19' and '95'.
Word delimiters are not applied to any numerical, boolean, date, or time fields, only to
string and memo fields.

Index Mode
There are four available Index Modes:

· imOrdinalIndex: Best choice when a primary or unique secondary key
consisting of a single ordinal field is available. When Strict Checking is
disabled, this mode may be used with floating point fields as long as there are
no fractional values (this is not checked). This option is available for all table
types, scales easily to SQL, and is most compatible with dynamic updating.

For best results, the index value should be sequential or nearly sequential (e.g.
CustomerNo should be 1001, 1002, 1003 rather than 1010, 1020, 1030).

· imRecordNo: Available only for dBase files. Use this option if you cannot use
an imOrdinalIndex. Only compatible with dynamic updating under certain
restrictive conditions (only appends allowed, no deletes or insertions permitted).

· imSeqNo: Available only for Paradox files. Same restrictions as imRecordNo.
During searches, the table must use the same index used when the dictionary
was created.

If your table does not have an ordinal index or you have an ordinal index but there are
large increments between index values, it is recommended that you add an additional
field and create a unique secondary index and populate the field with sequential index
values (gaps due to deleted records are not a problem).
When checked, Strict Checking only allows the imOrdinalIndex option to be used when
there is a single ordinal field primary key or unique secondary index. When
unchecked, the restriction on the ordinal field is relaxed to include numeric or floating
point fields as well. Floating point fields will only work if there are no fractional values
in the index (this is not checked).

Other Build Options
Words with a length less than the Minimum Word Length will not be included in the
dictionary. A minimum word length of three would therefore exclude words like 'a', 'of',
'we', etc., which are generally not very useful in a search. Note that it may exclude
some useful state (CA, NY), company (3M, TI), and other (PC) abbreviations and words
like 'go' and 'hi'.
Record Limit may be used for limiting the build to the first N records for testing
purposes.
Memory Limit is used during the build process up to this limit, at which point the least
frequently used items are compressed. If all indexes in memory have been
compressed, the build process will continue to consume memory beyond this limit.
When checked, the Alternative Memory Manager check box enables the use of a
memory allocation algorithm designed to work around a Delphi 2.0 memory
fragmentation bug. This bug primarily affects the processing of tables with a large
number of records. This option is disabled in the 16 bit demo.

Search Tab

Search For
Enter the word(s) to search for. Words can be separated by any of the word delimiters
defined in the configuration tab. The default wildcards are '*' and '?'. Searches are not
case sensitive. See Search Logic below for examples.

Search Button
Begins a new search.

Narrow Button

Scope of the search is limited to the records already selected during prior searches.

Search Results
Shows the results of the search in terms of the number of words that matched the
search criteria and the number of matching records (a function of the words found and
the search logic). Keep in mind that when using an slAnd search, the more words that
are found, the less likely there will be individual records that contain all the words. The
elapsed time of the search is also displayed. This figure does not include the time
needed to update the match table.
Press the Words button to switch to the Matching Words panel. Press the Records
button to view the match table.

Search Logic
There are seven search types: slAnd, slPhrase, slLike, slNear, slOr, slNot, and
slExpression. The three most common are: slAnd which searches for records that
contain all instances of the words in the Search For combo box; slOr which searches for
records that contain at least one instance of the words in the Search For combo box;
and slNot which selects all records that do not contain instances of the words in the
Search For combo box.
slLike searches for words that evaluate as the same using the Likeness function (the
results of which appear in the Words table in the Likeness field).
slNear searches for two words that are within NearWord (see the Near Word option
below) words of one another in a field(s). If the number of words in the search is not
two, an error is raised.
slPhrase searches for words in a specific order of appearance in the field(s).
slExpression enables expression evaluation using AND, OR, NOT, LIKE, NEAR,
"quoted phrase searches", and parentheses.

Search Examples
Logic Example Comment slExpression

Equivalent
slAnd delphi paradox ANDs each

word
delphi and
paradox

slOr delphi paradox ORs each
word

delphi or
paradox

slNot access NOTs each
word

not access

slLike computer LIKEs each
word
Wildcards
ignored

like computer

slNear delphi paradox Two word limit delphi near

Must read
table

paradox

slPhras
e

database engine Must read
table

"database
engine"
'database
engine'

Search Mode
Use smSearch to begin a new search. smNarrow ANDs the results of the current
search against the prior search, thereby narrowing the search results. smWiden is like
smNarrow, but uses OR logic to widen or expand the search results.

Rank Mode
Determines how records are ordered in the Match Table. There are three Rank Modes:
rmNone, rmCount, and rmPercent. rmNone leaves the records in index order.
rmCount adds a Rank field to the table that contains a count of the matching words.
rmPercent is like rmCount, except it uses a 100 scale.

Fields
By default, all searches are conducted against all the Selected Fields. However, this
option allows the search to be applied against a subset of fields (searches may not be
conducted on excluded fields without rebuilding the Words Table).

Caching
Memory Limit specifies how much memory is made available for caching. Reset
Stats button resets the caching statistics. Flush Cache clears the cache.

Matched Words
A list of words found that match the search criteria. This list is especially useful when
wildcards are being used. This is a cumulative list of matching words.

Other Search Options
The Match Table contains the records located during searches. The table will be
created in the alias specified in the Table tab. Record Limit sets a maximum number
of records allowed in the Match Table.
Use Any Char and One Char to set the characters used as wildcards.
Near Word specifies how close two words must be to qualify as near.

Links Dialog Box
The Data Field identifies the field from which the link is created.
The Link Table identifies the table containing the Link Field.
The Link Field identifies the field to which the link is created.
The Link Display identifies the field to be displayed in the table. Multiple fields may be
entered by separating the field names with semicolons (e.g. Name;Company;Address).

A Sample Search
1. Select the Tables tab
2. Select the DBDEMOS alias
3. Select the BIOLIFE.DB table
4. Use the menu to view the search table (View|Search Table)
5. Close the BIOLIFE.DB grid
6. In the Available list box double click on Common_Name, Notes, and Species

Name to move them to the Selected list box
7. Using the menu, select View|Show All Fields
8. Press Ctrl+T to reopen the BIOLIFE.DB grid and note that only the selected

fields are now displayed
9. Scroll the grid so that the Notes column is visible
10. Double click on one of the Notes fields and the memo contents are displayed
11. Close the Notes memo and the BIOLIFE.DB grid
12. Press the Next button
13. Press the Build button (compression will be negative for very small tables)
14. Using the menu, select View|Words Table to view the words in the dictionary
15. Close the WORDS.DB grid
16. Press the Next button
17. Enter 'edibility night' in the Search For combo box and press enter
18. The search results in two words being found and four matching records
19. Press Ctrl+M (or press the Records button) to view the records that match the

criteria (the matches are all in the Notes field)
20. Return to the Rubicon Demo form (you may leave the matched grid visible)
21. Press Alt+O to change the Search Logic to Or
22. Press the Search button
23. Now 24 records have been selected
24. Clear the contents of the Search For combo box and enter 'areas'
25. Press Alt+T to change the Search Logic to Not
26. Select the Search Mode option and change the Search Mode to smNarrow.
27. Press the Narrow button
28. The word 'area' was found once and narrowed the number of selected records

to 13
29. Clear the contents of the Search For combo box and enter 'edibility or night and

not areas'

30. Change the Search Mode to smSearch
31. Select the Search Logic option and press Alt+X to change the Search Logic to

slExpression
32. Press the Search button and again 13 records are found
33. Press File|Save to save the settings and results

AfterDelete method
Applies to
TUpdateDictionary

Declaration
procedure AfterDelete;
Insert this method into the DataSource.DataSet event of the same name so that
TUpdateDictionary can be notified of changes and thereby keep the WordsTable
synchronized with the DataSource.
The purpose of this method is to check for invalid deletions, and if one is identified, to
raise an error.
When IndexMode is imRecordNo, no errors are raised as the WordsTable remains valid
unless the DataSource is packed.
When IndexMode is imOrdinalIndex, any record may be deleted except the first record
(in index order) unless MinOrdIndex has been set.

Example
procedure TForm1.Table1AfterDelete(DataSet: TDataSet);
begin
 UpdateDictionary1.AfterDelete
end;
See also
AfterPost, BeforeDelete, BeforeEdit, BeforeInsert , TUpdateTable

AfterPost method
Applies to
TUpdateDictionary

Declaration
procedure AfterPost;
Insert this method into the DataSource.DataSet event of the same name so that
TUpdateDictionary can be notified of changes and thereby keep the WordsTable
synchronized with the DataSource.

Example
procedure TForm1.Table1AfterPost(DataSet: TDataSet);
begin
 UpdateDictionary1.AfterPost
end;
See also
AfterDelete, BeforeDelete, BeforeEdit, BeforeInsert , TUpdateTable

AltMemMgr property
Applies to
TMakeDictionary, TUpdateDictionary

Declaration
{$IFDEF AltMemMgr}
property AltMemMgr: Boolean;
{$ENDIF}

Setting AltMemMgr to True enables the alternative memory management code to be
used for cache memory. This option must be used when processing a DataSource that
contain a large number of records in a 32 bit application. Some performance gain (up
to 3%) may be realized by turning this option off for small to medium tables. This
option does not replace the existing memory manager. See Delphi 2.0 Memory
Fragmentation for more details.
The compiler directives in TARUBICN.INC determine whether this property is available.
By default, the property is available under Delphi 2.0 and not available under Delphi 1.0.
Default is True.
This property may be removed in future releases if Borland provides a fix to the
problem.

Example
MakeDictionary1.AltMemMgr := True;
See also
MemoryLimit

AnyChar property
Applies to
TSearchDictionary

Declaration
property AnyChar: Char;
The wildcard that matches any series of characters. Must be different from OneChar.
Default is '*'.

Example
SearchDictionary1.AnyChar := '%';
See also
NarrowSearch, OneChar, Search

AutoClose property
Applies to
TMakeProgress

Declaration
property AutoClose: Boolean;
When True, the progress form will automatically close upon completion of the dictionary
build. If False, it will remain open until the user closes the form.
Default is True.

Example
MakeProgress1.AutoClose := False;

BatchAdd method
Applies to
TUpdateDictionary

Declaration
procedure BatchAdd;
Whenever multiple records are added to the DataSource using TBatchMove, copy, or
equivalent command, the WordsTable can be updated by moving the cursor to each
added record and calling BatchAdd.

Example
with Table1 do
 begin
 Last;
 Bookmark := GetBookmark;
 { add the records }
 GotoBookmark(Bookmark);
 FreeBookmark(Bookmark);
 Next;
 while not Eof do
 begin
 UpdateDictionary1.BatchAdd;
 Next
 end
 end;
See also
BatchDelete, BeforeEdit, BeforeInsert

BatchDelete method
Applies to
TUpdateDictionary

Declaration
procedure BatchDelete;
Whenever multiple records are deleted from the DataSource using TBatchMove,
subtract, or equivalent command, the WordsTable can be updated by moving the cursor
to each record to be deleted and calling BatchDelete, and then performing the delete.

Example
with Table1 do
 begin
 Bookmark := GetBookmark;
 while not Eof do
 begin
 UpdateDictionary1.BatchDelete;
 Next
 end;
 GotoBookmark(Bookmark);
 FreeBookmark(Bookmark);
 { delete records from current location to Eof }
 end;
See also
BatchAdd, BeforeDelete

BeforeDelete method
Applies to
TUpdateDictionary

Declaration
procedure BeforeDelete;
Insert this method into the DataSource.DataSet event of the same name so that
TUpdateDictionary can be notified of changes and thereby keep the WordsTable
synchronized with the DataSource.

Example
procedure TForm1.Table1BeforeDelete(DataSet: TDataSet);
begin
 UpdateDictionary1.BeforeDelete
end;
See also
AfterDelete, AfterPost, BeforeEdit, BeforeInsert , #LJTUpdateTable#TUpdateTable

BeforeEdit method
Applies to
TUpdateDictionary

Declaration
procedure BeforeEdit;
Insert this method into the DataSource.DataSet event of the same name so that
TUpdateDictionary can be notified of changes and thereby keep the WordsTable
synchronized with the DataSource.

Example
procedure TForm1.Table1BeforeEdit(DataSet: TDataSet);
begin
 UpdateDictionary1.BeforeEdit
end;
See also
AfterDelete, AfterPost, BeforeDelete, BeforeInsert , #LJTUpdateTable#TUpdateTable

BeforeInsert method
Applies to
TUpdateDictionary

Declaration
procedure BeforeInsert;
Insert this procedure into the DataSource.DataSet event of the same name so that
TUpdateDictionary can be notified of changes and thereby keep the WordsTable
synchronized with the DataSource.

Example
procedure TForm1.Table1BeforeInsert(DataSet: TDataSet);
begin
 UpdateDictionary1.BeforeInsert
end;
See also
AfterDelete, AfterPost, BeforeDelete, BeforeEdit, #LJTUpdateTable#TUpdateTable

BlobBytesRead property
Applies to
TSearchDictionary, TUpdateDictionary

Declaration
property BlobBytesRead: LongInt;
Returns the number of Blob bytes read from the WordsTable. Does not include any
Blob field related overhead (which varies by table type) or any Blob bytes read from the
DataSource.
Run-time and read only.

Example
BlobBytesReadLabel.Caption :=
IntToStr(SearchDictionary1.BlobBytesRead);
See also
BlobBytesWritten, CacheEdits, CacheInserts, CacheReads, DiskDeletes, DiskEdits,
DiskInserts, DiskReads, ResetStats

BlobBytesWritten property
Applies to
TMakeDictionary, TUpdateDictionary

Declaration
property BlobBytesWritten: LongInt;
Returns the number of Blob bytes written to the WordsTable. Does not include any
Blob field related overhead (which varies by table type).
Run-time and read only.

Example
BlobBytesWrittenLabel.Caption :=
 IntToStr(MakeDictionary1.BlobBytesWritten);
See also
BlobBytesRead, CacheEdits, CacheInserts, CacheReads, DiskDeletes, DiskEdits,
DiskInserts, DiskReads, ResetStats

BlobFieldSize property
Applies to
TMakeDictionary

Declaration
property BlobFieldSize: Integer;
This property defines the size of the BlobData field in the WordsTable. For Paradox
tables, higher values increase the size of the DB file and reduce the size of the MB file.
Setting the value too high results in excessive wasted space in the DB file. Setting it
too low causes more data to be saved to the MB file and, because the MB file has to be
accessed more frequently, degrades build performance.
Not available for all table types. Default is 32.

Example
MakeDictionary1.BlobFieldSize := 40;
See also
WordFieldSize

Builder property
Applies to
TSearchDictionary, TUpdateDictionary

Declaration
property Builder: TBuildDictionary;
Setting Builder to the TBuildDictionary (which is the ancestor to TMakeDictionary and
TUpdateDictionary) that made the WordsTable ensures that all the values in common
are set correctly.
When a value is assigned to Builder, the following properties become read only:
DataSource, DataTypes, FieldNames, FieldTypes, FileCompression, IndexMode,
Likeness, MinOrdIndex, MinWordLen, OnProcessField, StrictChecking, UpperCase,
WordDelims, WordsTables.

Example
SearchDictionary1.Builder := MakeDictionary1;
See also
DataSource, DataTypes, FieldNames, FieldTypes, FileCompression, IndexMode,
Likeness, MinOrdIndex, MinWordLen, OnProcessField, StrictChecking, UpperCase,
WordDelims, WordsTables.

CacheCount property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property CacheCount: LongInt;
The number of unique words in the cache.
During a TMakeDictionary.Execute, the number of words in the cache is the same as
the number of unique words processed plus the number of omitted words (i.e.
OmitList.Count).
Run-time and read only.

Example
WordCountLabel.Caption := IntToStr(MakeDictionary1.CacheCount);
See also
MemoryLimit

CacheEdits property
Applies to
TUpdateDictionary

Declaration
property CacheEdits: LongInt;
Returns the number of edits to WordsTable that were not immediately written to disk but
saved to cache, therefore saving disk write time. DelayedWrites must be True in order
for there to be any CacheEdits.
Run-time and read only.

Example
with UpdateDictionary1 do
 if CacheEdits + CacheInserts > 0 then
 begin
 WriteCache;
 ResetStats
 end;
See also
BlobBytesRead, BlobBytesWritten, CacheInserts, CacheReads, DiskDeletes, DiskEdits,
DiskInserts, DiskReads, ResetStats

CacheInserts property
Applies to
TUpdateDictionary

Declaration
property CacheInserts: LongInt;
Returns the number of inserts to WordsTable that were not immediately written to disk
but saved to cache, therefore saving disk write time. DelayedWrites must be True in
order for there to be any CacheInserts.
Run-time and read only.

Example
with UpdateDictionary1 do
 if CacheEdits + CacheInserts > 0 then
 begin
 WriteCache;
 ResetStats
 end;
See also
BlobBytesRead, BlobBytesWritten, CacheEdits, CacheReads, DiskDeletes, DiskEdits,
DiskInserts, DiskReads, ResetStats

CacheReads property
Applies to
TSearchDictionary, TUpdateDictionary

Declaration
property CacheReads: LongInt;
Returns the number of cache reads or hits. This is the count of WordsTable records
read from memory, and therefore represent records not read from disk.
Run-time and read only.

Example
CacheReadsLabel.Caption :=
IntToStr(UpdateDictionary1.CacheReads);
See also
BlobBytesRead, BlobBytesWritten, CacheEdits, CacheInserts, DiskDeletes, DiskEdits,
DiskInserts, DiskReads, ResetStats

CreateMatchTable method
Applies to
TSearchDictionary

Declaration
procedure CreateMatchTable(Table: TTable);
Call this procedure after a search to fill the Table with records from the DataSource
matching the search criteria. The number of records copied into Table is the lesser of
RecordCount or RecordLimit. The RankMode property control the order of the records
in the Table. If Table exists before the call to CreateMatchTable, it is deleted.
If RecordCount is greater than RecordLimit, then matching records up to RecordLimit
are added to the Table. These records are added in index order irrespective of any
RankMode that may be in place (ranking occurs after the match table has been
created).
Only the fields that are in DataSource.DataSet.Fields are included in Table. Fields that
have a DataType of ftAutoInc are translated to ftInteger.

Example
with SearchDictionary1 do CreateMatchTable(Table1);
See also
MatchTable, RankMode, RecordLimit

DataSource property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property DataSource: TDataSource;
The DataSource property determines where the component obtains the data to be
searched. DataSource.DataSet may be set to ReadOnly.
The fields included in the dictionary are the fields accessible in the
DataSource.DataSet.Fields property. If you do not specify any fields in the Delphi IDE
field editor, then all fields are included. The list of fields included in the dictionary can
be further limited by the DataTypes/FieldTypes and FieldNames properties.
To include link or lookup fields from other tables, simply add calculated fields to the
DataSource.DataSet.

Example
MakeDictionary1.DataSource := DataSource1;
See also
DataTypes, FieldNames, FieldTypes, WordsTable, Working with Link, Lookup, or
Normalized Tables

DataTypes property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property DataTypes: TDataTypes;
Because FieldTypes is too large of a set to be handled by the property editor, a property
editor compatible set, DataTypes, is provided to access the most common values of
FieldTypes. With DataTypes you can set all FieldTypes except ftUnknown, ftGraphic,
ftFmtMemo, ftParadoxOle, ftDBaseOle, and ftTypedBinary (to set these types, use
FieldTypes in your code).
While you can read and write to DataTypes at run time, you should use FieldTypes
instead.
Before the contents of a field are added to the dictionary or are accessed as part of a
search, three checks are made: first, the field must be a member of
DataSource.DataSet.Fields; second, the DataType of the field is checked to see if it is in
FieldTypes; and, third, if there are entries in the FieldNames list, the FieldName is
checked against a list of FieldNames.
Default is [dtString, dtMemo] for Delphi, all fields for DLL applications.

Example
DataTypes := [dtString..dtDateTime,dtMemo];
See also
FieldNames

DelayedWrites property
Applies to
TUpdateDictionary

Declaration
property DelayedWrites: Boolean;
Enables delayed writes. This means that changes to records in the WordsTable are not
written to disk until the cache is full, WriteCache, FlushCache, or Free is called.
Turning this property off causes any unwritten records to be written.
Use this property to speed up the updating process. When the cache is full, the least
recently used records are written to disk. This process may slow down your
application.
No searches should be conducted against the table while using DelayedWrites.
Default is False.

Example
UpdateDictionary1.DelayedWrites := True;
See also
CacheEdits, CacheInserts, FlushCache, WriteCache

DiskDeletes property
Applies to
TUpdateDictionary

Declaration
property DiskDeletes: LongInt;
Returns the number of records (and therefore words) deleted from the WordsTable
during the update process.
Note that there is no corresponding cache property for DiskDeletes since all deletes are
immediately written to disk.
Run-time and read only.

Example
DiskDeletesLabel.Caption :=
IntToStr(UpdateDictionary1.DiskDeletes);
See also
BlobBytesRead, BlobBytesWritten, CacheEdits, CacheInserts, CacheReads, DiskEdits,
DiskInserts, DiskReads, ResetStats

DiskEdits property
Applies to
TUpdateDictionary

Declaration
property DiskEdits: LongInt;
Returns the number of records that have been edited from the WordsTable during the
update process.
Run-time and read only.

Example
DiskEditLabel.Caption := IntToStr(UpdateDictionary1.DiskEdits);
See also
BlobBytesRead, BlobBytesWritten, CacheEdits, CacheInserts, CacheReads,
DiskDeletes, DiskInserts, DiskReads, ResetStats

DiskInserts property
Applies to
TMakeDictionary, TUpdateDictionary

Declaration
property DiskInserts: LongInt;
Returns the number of records added to the WordsTable.
Run-time and read only.

Example
DiskInsertsLabel.Caption :=
IntToStr(MakeDictionary1.DiskInserts);
See also
BlobBytesRead, BlobBytesWritten, CacheEdits, CacheInserts, CacheReads,
DiskDeletes, DiskEdits, DiskReads, ResetStats

DiskReads property
Applies to
TSearchDictionary, TUpdateDictionary

Declaration
property DiskReads: LongInt;
Returns the number of WordsTable records read from disk.
Run-time and read only.

Example
BytesReadLabel.Caption := IntToStr(SearchDictionary1.DiskReads);
See also
BlobBytesRead, BlobBytesWritten, CacheEdits, CacheInserts, CacheReads,
DiskDeletes, DiskEdits, DiskInserts, ResetStats

EDictionary object
Declaration
EDictionary = class(EStException);
EStException = class(Exception)
 protected

 FErrorCode: LongInt;
 public
 property ErrorCode: LongInt
 read FErrorCode write FErrorCode;
 end;
Most errors returned by Rubicon are EDictionary errors. However, the routines in the
taTools unit return EStContainerError errors which are also derived from EStException.

ErrorPos property
Applies to
TSearchDictionary

Declaration
property ErrorPos: Integer;
When SearchLogic is slExpression and there is an error in the syntax, ErrorPos returns
the approximate position of the error in SearchFor. If there is no error, ErrorPos is 0.
Run-time and read only.

Example
if SearchDictionary1.ErrorPos > 0 then { do something } ;
See also
SearchFor, SearchLogic

Execute method
Applies to
TMakeDictionary

Declaration
procedure Execute;
Builds a new WordsTable based on the contents of DataSource. DataSource.DataSet
should not be updated during the build process (it can be a ReadOnly table).
The fields added to the dictionary are determined by the DataSource.DataSet.Fields,
DataTypes/FieldTypes and FieldNames properties.
For string and memo fields, words are parsed using WordDelims.
Numeric, boolean, date, and time fields are added directly to the dictionary.
For Blob fields other than memo fields, an OnProcessField event handler must exist.
This event can also be used to customize the handling of standard field types. In 16 bit
applications, Blob fields are limited to 64k (an OnProcessField event may be used to
work around this).
The execution process consists of two phases: Phase one reads each record in the
DataSource.DataSet and builds a list of words and their locations in memory. During
this phase, memory consumption grows. Phase two writes the in memory data to the
WordsTable and releases memory used in phase one.
Resource usage can be controlled by setting FileCompression and MemoryLimit.
Use the OnPhaseOne and OnPhaseTwo events to monitor the progress of the process.
The properties BlobBytesWritten, CacheCount, DiskInserts, MaxMemUsed,
MemCompression, MemoryUsage, RecordNo, State are useful indicators of execution.
These events may also be used to abort the process.
The number of records processed can be limited by using RecordLimit.

Example
Screen.Cursor := crHourGlass;
with MakeDictionary1 do
 try
 MemoryLimit := 8 * 1048575 {2^20 - 1};
 MinWordLen := 3;
 IndexMode := imOrdinalIndex;
 FieldTypes := [ftString..ftDateTime,ftMemo];
 Execute
 finally
 Screen.Cursor := crDefault;
 end;
See also
CacheCount, DataTypes, FileCompression, MaxMemUsed, MemCompression,

MemoryUsage, MemoryLimit, OnProcessField, OnPhaseOne, OnPhaseTwo,
RecordLimit, DataSource, RecordNo, State, WordDelims, WordsTable

Execute method
Applies to
TSearchDictionary

Declaration
procedure Execute;
Performs the search based on the values of the SearchFor, SearchLogic, and
SearchMode properties.

Example
with SearchDictionary1 do
 begin
 SearchFor := 'Borland';
 SearchLogic := slAnd;
 SearchMode := smSearch;
 Execute
 end;
See also
NarrowSearch, Search, Search Examples, SearchFor, SearchLogic, SearchMode,
WidenSearch

Expanded property
Applies to
TMakeProgress, TUpdateStats

Declaration
property Expanded: Boolean;
Determines whether the form is opened with an expanded view.
Default is False.

Example
MakeProgress1.Expanded := True;
See also
Panels

FieldNames property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property FieldNames: TStrings;
Before the contents of a field are added to the dictionary or are accessed as part of a
search, three checks are made: first, the field must be a member of
DataSource.DataSet.Fields; second, the DataType of the field is checked to see if it is in
FieldTypes; and, third, if there are entries in the FieldNames list, the FieldName of the
field is checked against a list of FieldNames.
For DLL applications, all fields and all field types are included in the
DataSource.DataSet.Fields and FieldTypes properties, so use the FieldNames property
to select the fields for inclusion in the WordsTable.

Example
MakeDictionary1.FieldNames := MyListOfFields;
See also
DataTypes, FieldTypes

FieldTypes property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property FieldTypes: TFieldTypes;
Before the contents of a field are added to the dictionary or are accessed as part of a
search, three checks are made: first, the field must be a member of
DataSource.DataSet.Fields; second, the DataType of the field is checked to see if it is in
FieldTypes; and, third, if there are entries in the FieldNames list, the FieldName is
checked against a list of FieldNames.
This property is not published because the size of the set is too large for the property
editor to handle. Use DataTypes in the property editor to set FieldTypes of
ftString..ftMemo. The DataTypes property cannot be used to set ftUnknown, ftGraphic,
ftFmtMemo, ftParadoxOle, ftDBaseOle, and ftTypedBinary in the IDE or at run time (you
must use FieldTypes instead).
Default is [ftString, ftMemo] for Delphi, all field types for DLL applications. Run-time.

Example
MakeDictionary1.FieldTypes := [ftString..ftDateTime,ftMemo];
See also
DataTypes, FieldNames

FileCompression property
Applies to
TMakeDictionary, TUpdateDictionary

Declaration
property FileCompression: Boolean;
This option compresses information inside the dictionary. This option should be left on
unless the table resides on a compressed disk drive that offers superior compression to
the build-in compression routines (this would be determined by comparing the file size
with and without the file compression option enabled). The amount of blob data
compression will vary with the frequency that a word appears in multiple records (the
more often it shows up, the less compression achieved), but compression rates of 95%
or more are not unusual.
Do not change the value of FileCompression during a dictionary build.
Default is True.

Example
MakeDictionary1.FileCompression := True;
See also
MemCompression

FindXxxx methods
Applies to
TSearchDictionary

Declaration
function FindFirst: Boolean;
function FindLast: Boolean;
function FindNext: Boolean;
function FindPrior: Boolean;
A set of routines that may be called after a search has been conducted to move the
cursor in the DataSource to the first, last, next, or prior location of a record that matched
the search criteria.
First, last, next, and prior are all relative to the IndexMode used to make the
WordsTable. Thus if an imSeqNo IndexMode was used to make the WordsTable, but
the table is open on a secondary index, calls to FindNext will find the next SeqNo, but
this may not be the 'next' record in the secondary index.

Example
with SearchDictionary1 do
 if FindFirst then
 repeat
 { do something }
 until not FindNext;
See also
MatchBits

FlushCache method
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
procedure FlushCache;
Forces any unwritten records in the memory cache to be written to disk and releases
the associated memory. Most useful for applications that are performing searches or
updates. Should not be used by TMakeDictionary since it manages its own cache.

Example
UpdateDictionary1.FlushCache;
See also
CacheEdits, CacheInserts, DelayedWrites, WriteCache

Form property
Applies to
TMakeProgress, TUpdateStats

Declaration
property TMakeProgress.Form: TMakeProgressForm;
property TUpdateStats.Form: TUpdateStatsForm;
Use this property to access the form.
Run-time.

Example
with MakeProgress1 do
 if (Form <> nil) and
 (Form.WindowState = wsMinimized) then
 Form.WindowState := wsNormal;
See also
Expanded, Panels

IndexFieldName property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property IndexFieldName: string;
This property is useful when using an imOrdinalIndex IndexMode and the DataSource is
open on an index another index. If imOrdinalIndex is not being used, this property is
ignored.
If no IndexFieldName is specified, all the components assume the DataSource is open
on the index which contains the imOrdinalIndex field. If the table is not open on this
index, use the IndexFieldName to specify the correct field.
If StrictChecking is True, checks are performed to confirm that the IndexFieldName is a
single field unique index and that it's DataType is ftSmallInt, ftWord, or ftInteger. When
StrictChecking is False, the only check performed is that the IndexFieldName is a
defined field in the table. In addition, the value of StrictChecking affects how many
field(s) are displayed in the Delphi Object Inspector.
For TSearchDictionary FindXxxx routines and for searches that require reading the
source table (SubFieldNames, slNear and slPhrase SearchLogic), the use of
IndexFieldName will require that the Delphi component (but not the DLL) temporarily
switch indexes. There is some overhead associated with switching indexes, so the use
of IndexFieldName may not be appropriate, particularly for SQL tables. You may find it
faster to simple devote another TTable open on the ordinal index to the
TSearchDictionary.
In DLL applications, IndexFieldName must be set after setting the DataSource. The
DLL always opens DataSource on the IndexFieldName index.

Example
UpdateDictionary1.IndexFieldName = 'CustNo';
See also
IndexMode, StrictChecking

IndexMode property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property IndexMode: TIndexMode;
There are four available Index Modes:
imOrdinalIndex: Best choice when a primary or unique secondary key consisting of a
single ordinal field is available. The table must be open on this index unless
IndexFieldName is specified. When StrictChecking is disabled, this mode may be used
with floating point fields as long as there are no fractional values (this is not checked).
This option is available for all table types, scales easily to SQL, and is most compatible
with dynamic updating. For best results, the index value should be sequential or nearly
sequential (e.g. CustomerNo should be 1001, 1002, 1003 rather than 1010, 1020,
1030).
imRecordNo: Available only for dBase files. Use this option if you cannot use an
imOrdinalIndex. The DataSource.DataSet must not have any range limitations on it.
Only compatible with dynamic updating under certain restrictive conditions (only
appends and edits allowed, no deletions or insertions permitted).
imSeqNo: Available only for Paradox files. Same restrictions as imRecordNo.
During searches, the DataSource.DataSet must use the same index used when the
dictionary was created.
imNone: Table does not have a compatible IndexMode.
If your table does not have an ordinal index or you have an ordinal index but there are
large increments between index values, it is recommended that you add an additional
field and create a unique secondary index and populate the field with sequential index
values (gaps due to deleted records are not a problem).
For a given DataSource and resulting WordsTable, the IndexMode used in
TSearchDictionary must be the same as the one used in TMakeDictionary (this is not
checked).

Example
MakeDictionary1.IndexMode := imOrdinalIndex;
See also
Index Modes, IndexFieldName, MinOrdIndex, TIndexMode

IndexRange property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property IndexRange: LongInt;
Difference between the minimum index value and the maximum index value. If
MinOrdIndex is set, it replaces the minimum index value. If SourceRange is set,
IndexRange is equal to the SourceRange.
Run-time and read only.

See also
IndexMode, MinOrdIndex

KeyViolName property
Applies to
TMakeDictionary

Declaration
property KeyViolName: string;
During phase one of a dictionary build, the words are stored in memory (without being
truncated if the length of the word exceeds WordFieldSize). During phase two, these
words are written to the WordsTable. If the WordFieldSize property is set too low, it is
possible that key violations will result due to the truncation of trailing characters. If a
key violation results, the word is written to a Paradox table with the name KeyViolName.
The only valid extension is '.db', and this is optional.

Examples
MakeDictionary1.KeyViolName := 'd:\project\keyviol';
MakeDictionary1.KeyViolName := ':rubicon:keyviol.db';
See also
DataSource, MatchTable, WordsTable

LikeFieldSize property
Applies to
TMakeDictionary

Declaration
property LikeFieldSize: Integer;
Determines the size (or length) of the Likeness field in the WordsTable. Setting
LikeFieldSize to zero removes the Likeness field from the WordsTable after the next
Execute and disables slLike SearchLogic.
Default is 5.

Example
MakeDictionary1.LikeFieldSize := 8;
See also
Likeness

Likeness property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property Likeness: TStringFunc;
Function used to convert words to a 'like' equivalent string. Two or more words that
have the same 'like' string will evaluate as equivalent when using slLike SearchLogic.
The Likeness function must return a string of less than or equal to LikeFieldSize
characters.
Default is Soundex. Run-time.

Example
MakeDictionary1.Likeness := Metaphone;
See also
Builder, LikeFieldSize, SearchLogic, Soundex

LoadOmitsFromTable method
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
procedure LoadOmitsFromTable(Table: TTable; FieldName: string);
Use this method to fill the OmitList with words from the FieldName field from Table.
The OmitList is limited to MaxOmits words.

Example
MakeDictionary1.LoadOmitsFromTable(OmitsTable, 'OmitWord');
See also
OmitList

Maker property
Applies to
TMakeProgress

Declaration
property Maker: TMakeDictionary;
The Maker is the TMakeDictionary whose progress is displayed in the form.

Example
MakeProgress1.Maker := MakeDictionary2;

MakeWordDelims function
Declaration
function MakeWordDelims(WordCharSet: TCharSet) : string;
Given the characters that make up a word, WordCharSet, returns a string of
WordDelims. The example sets WordDelims to all characters except 'A'..'Z' and 'a'..'z'.

Example
MakeDictionary1.WordDelims := MakeWordDelims(['A..'Z','a'..'z']);
See also
WordDelims

MatchBits property
Applies to
TSearchDictionary

Declaration
property MatchBits: TtaBits;
MatchBits is a bit set class derived from TurboPower's TStBits, part of SysTools.
Because other routines encapsulate the most common TtaBits methods (see See Also),
an application will rarely have to rely on this property directly.

Example
with SearchDictionary1 do
 begin
 Location := MatchBits.FirstSet;
 while Location <> -1 do
 begin
 case IndexMode of
 imOrdinalIndex : TTable(DataSource.DataSet).FindKey(
 [Location + MinIndex]);
 imRecordNo : SetToRecordNo(DataSource.DataSet,Location +
1);
 imSeqNo : SetToSeqNo(DataSource.DataSet,Location + 1)
 end;
 { do something with the record }
 Location := MatchBits.NextSet(Location)
 end
 end;
See also
FindFirst, FindLast, FindNext, FindPrior, Matches, MinIndex

MatchCount property
Applies to
TSearchDictionary

Declaration
property MatchCount: LongInt;
Number of words that match the search criteria of the latest Search or NarrowSearch.
Is not cumulative over successive calls to NarrowSearch.
Run-time and read only.

Example
if SearchDictionary1.MatchCount >= 20 then
 MessageDlg('Please narrow search further',mtInformation,
[mbOk],0);
See also
MatchingWords, NarrowSearch, RecordCount, Search

Matches method
Applies to
TSearchDictionary

Declaration
function Matches: Boolean;
Returns True if the current record of the DataSource matches the search criteria.
Returns False the current record does not match the search criteria, the DataSource is
nil, the DataSource.DataSet is closed, or a search has not been conducted. It may be
necessary to call UpdateCursorPos before calling Matches.

Example
procedure TForm1.Table1FilterRecord(DataSet: TDataSet;

var Accept: Boolean);
begin
 { Assumes IndexMode = imOrdinalIndex }
 Accept := SearchDictionary1.Matches
end;
See also
NarrowSearch, Search

MatchingWords method
Applies to
TSearchDictionary

Declaration
procedure MatchingWords(List: TStrings);
Returns a list of words matched during the search. If only slAnd, slNear, and slPhrase
SearchLogic are used, than all the words in the list will be in each matching record. If
other types of SearchLogic are used, then only a subset of words in the list will be in
each matching record (e.g. words matched using slNot will never appear in the
matching records)
Example
with SearchDictionary1 do
 begin
 SearchLogic := slOr;
 Search('Win*');
 MatchingWords(ListBox1.Items); { Filled with Win95, Windows,
WinNT }
 end;
See also
SearchFor, SearchMode, SearchLogic

MatchTable property
Applies to
TSearchDictionary

Declaration
property MatchTable: TTable;
After a search, records matching the search criteria are copied from the DataSource
into this table. The number of records copied into the MatchTable is the lesser of
RecordCount or RecordLimit. The order of the records in the MatchTable is controlled
by RankMode.
MatchTable is optional, it may be left unassigned.

Example
SearchDirectory1.MatchTable := Table1;
See also
CreateMatchTable, RankMode, RecordCount, RecordLimit

MaxMemUsed property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property MaxMemUsed: LongInt;
The maximum value of MemoryUsage.
Run-time and read only.

Example
MaxMemUsedLabel.Caption := IntToStr(MakeDictionary1.MaxMemUsed);
See also
MemoryLimit, MemoryUsage, ResetStats

MemCompression property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property MemCompression: Boolean;
Indicates whether memory compression is being used.
Run-time and read only.

See also
FileCompression

MemoryLimit property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property MemoryLimit: LongInt;
For TMakeDictionary, if MemoryUsage exceeds MemoryLimit, then MemCompression is
turned on and the least frequently used memory data structures are compressed. If all
data structures in memory have been compressed, the build process will continue to
consume memory beyond this limit.
For TSearchDictionary and TUpdateDictionary, behavior is the same except that when
compression is on and MemoryLimit is exceeded, indexes are removed from memory.
If the alternative memory manager is being used, the portion of MemoryUsage that
represents memory waiting to be reused is not included in the test against MemoryLimit.
See Delphi 2.0 Memory Fragmentation for more details.
Default for TMakeDictionary is 4,000,000 with a minimum of 1,000,000.
Default for TSearchDictionary and TUpdateDictionary is 0. Note that even with
MemoryLimit set to zero, there still will be several thousand of bytes reported by
MemoryUsage. This represents memory used by non-cache data structures.
Therefore, if you want to set aside 50k for cache usage, set MemoryLimit to 55k
(approximate, will vary with the IndexRange of the DataSource).

Example
MakeDictionary1.MemoryLimit := 20000000;
See also
MemCompression, MemoryUsage

MemoryUsage property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property MemoryUsage: LongInt;
The current amount of memory used by the component. The value excludes some
data structures, so the actual memory usage is somewhat higher.
Run-time and read only.

Example
MemoryUsageLabel.Caption :=
IntToStr(MakeDictionary1.MemoryUsage);
See also
MaxMemUsed, MemoryLimit

MinIndex property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property MinIndex: LongInt;
When working with the MatchBits methods FirstSet, NextSet, PrevSet, LastSet (and the
equivalent XxxxClear routines), MinIndex should be added to the return value in order to
identify the correct location in the table.
Run-time and read only.

Example
with SearchDirectory1 do
 begin
 Location := MatchBits.FirstSet;
 if (Location <> -1) and (IndexMode = imOrdinalIndex) then
 TTable(DataSource.DataSet).FindKey([Location + MinIndex])
 end;
See also
MatchBits

MinOrdIndex property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property MinOrdIndex: LongInt;
A non-zero value causes MinIndex to be set to MinOrdIndex when IndexMode is
imOrdinalIndex. This property is useful when updating imOrdinalIndex tables and you
wish to be able to add records before the first record in the table.
This property must be set when the dictionary is first built and the same value must be
used for all subsequent updates and searches.
Changing MinOrdIndex after the build and then updating the WordsTable will corrupt the
locations within the dictionary. An incorrect MinOrdIndex used in searches will simply
result in meaningless search results (the underlying WordsTable are not corrupted).
For SQL tables, using MinOrdIndex eliminates a call to DataSource.DataSet.First and
may speed up some operations. When used in conjunction with SourceRange,
MinOrdIndex plus SourceRange must be greater than or equal to the maximum value of
the index. This is not checked.
Default is 0.

Example
MakeDictionary1.MinOrdIndex := 100;
See also
IndexMode

MinWordLen property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property MinWordLen: Integer;
Words with a length less than the minimum word length will not be included in the
dictionary or a search (unless one of the characters is AnyChar). A minimum word
length of three would therefore exclude words like 'a', 'of', 'we', etc., which are generally
not very useful in a search. Note that it may exclude some useful state (CA, NY),
company (3M, TI), and other (PC) abbreviations and words like 'go' and 'hi'.
Valid values are 1..10. Default is 1.

Example
MakeDictionary1.MinWordLen := 3;
See also
DataTypes, FieldNames, FieldTypes, OmitList

NarrowSearch method
Applies to
TSearchDictionary

Declaration
procedure NarrowSearch(S: string);
NarrowSearch is a shorthand equivalent to:

SearchDictionary1.SearchFor := S;
SearchDictionary1.SearchMode := smNarrow;
SearchDictionary1.Execute;

Example
with SearchDirectory1 do
 begin
 SearchLogic := slAnd;
 Search('delphi paradox');
 SearchLogic := slNot;
 NarrowSearch('access')
 end;
See also
Execute, Search, SearchFor, SearchLogic, SearchMode, WidenSearch

NearWord property
Applies to
TSearchDictionary

Declaration
property NearWord: Integer;
The parameter used by slNear SearchLogic to determine whether two words are near
each other.
Default is 8.

Example
with SearchDirectory1 do
 begin
 NearWord := 10;
 SearchLogic := slNear;
 Search('delphi component');
 end;
See also
SearchLogic

OmitList property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
procedure OmitList: TStrings;
Assign the list of words to be omitted from the WordsTable. These words need not be
in upper case. One word per line. No duplicate words permitted.

Example
TUpdateDictionary.OmitList := MyOmitList;
See also
LoadOmitsFromTable, MinWordLen, WordsTable

OneChar property
Applies to
TSearchDictionary

Declaration
property OneChar: Char;
The wildcard that matches any series of characters. Must be different from AnyChar.
Default is '?'.

Example
SearchDictionary1.OneChar := '#';
See also
AnyChar

OnPhaseOne property
Applies to
TMakeDictionary

Declaration
property OnPhaseOne: TNotifyEvent;
Provides notification during phase one of the execute process.
Before processing of phase one begins, OnPhaseOne is called and State =
[dsPhaseOne, dsStart]. When phase one processing is completed, OnPhaseOne is
called with State = [dsPhaseOne, dsDone] (may also include dsAbort).
During phase one, RecordNo refers to the number of records processed. Phase one
processes all the records (or up to RecordLimit) in DataSource, so OnPhaseOne will be
called approximately DataSource.DataSet.RecordCount + 2 times (RecordCount is
approximate for some table types).
Before indexes are compressed, the event is called with State = [dsPhaseOne,
dsCompress, dsStart]. When compression is completed, the event is called again with
dsStart replaced with dsDone.
To abort processing, set State := State + [dsAbort].

Example
procedure TForm1.MakeDictionary1PhaseOne(Sender: TObject);
begin
 with TMakeDictionary(Sender),PhaseForm do
 begin
 if State = [dsPhaseOne, dsStart] then
 begin
 Gauge.MinValue := 0;
 { RecordCount is approximate for some table types! }
 Gauge.MaxValue := DataSource1.DataSet.RecordCount;
 Gauge.Progress := 0;
 Caption := 'Phase One';
 DBSizeLabel.Caption := '';
 MBSizeLabel.Caption := '';
 CompressionLabel.Caption := '';
 end;
 Gauge.Progress := RecordNo;
 MemUsedLabel.Caption :=

Format('%10.0n',[MemoryUsage + 0.001]);
 WordCountLabel.Caption :=

Format('%10.0n',[CacheCount - OmitList.Count + 0.001]);
 Application.ProcessMessages;
 if not PhaseForm.Visible then State := State + [dsAbort]
 end

end;
See also
OnPhaseTwo

OnPhaseTwo property
Applies to
TMakeDictionary

Declaration
property OnPhaseTwo: TNotifyEvent;
Provides notification during phase two of the execute process.
Before processing of phase two begins, OnPhaseTwo is called and State =
[dsPhaseTwo, dsStart]. When phase two processing is completed, OnPhaseTwo is
called with State = [dsPhaseTwo, dsDone] (may also include dsAbort).
During phase two, DiskInserts refers to the number of records written to the
WordsTable. Phase two will process CacheCount records, so OnPhaseTwo will be
called CacheCount + 2 times. (Note: the value of CacheCount cited here is its value
at the end of phase one or at the start of phase two. During the processing of phase
one CacheCount is increasing, while in phase two it is decreasing).
To abort processing, set State := State + [dsAbort].

Example
procedure TForm1.MakeDictionary1PhaseTwo(Sender: TObject);
begin
 with TMakeDictionary(Sender),PhaseForm do
 begin
 if dsStart in State then
 begin
 Caption := 'Phase Two';
 Gauge.MinValue := 0;
 Gauge.MaxValue := CacheCount;
 Gauge.Progress := 0;
 end;
 Gauge.Progress := DiskInserts;
 MemUsedLabel.Caption :=

Format('%10.0n',[MemoryUsage + 0.001]);
 Application.ProcessMessages;
 if not PhaseForm.Visible then State := State + [dsAbort]
 end
end;
See also
OnPhaseOne

OnProcessField property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property OnProcessField: TProcessFieldEvent;
Allows for custom field handling.

Example
UpdateDictionary1.OnProcessField :=
UpdateDictionary1ProcessField;
See also
ProcessField, TProcessFieldEvent

OnSearch property
Applies to
TSearchDictionary

Declaration
property OnSearch: TNotifyEvent;
Most wildcard searches will require that all or part of WordsTable to be scanned (e.g.
'*fish' would require the entire table to be scanned, whereas 'tuna*' would require only
those words beginning with 'tuna' to be scanned). This event is called periodically
during the scan to give the application an opportunity to abort the scan by setting adding
[dsAbort] to State.

Example
procedure TMainForm.SearchDictionary1Search(Sender: TObject);
begin
 Application.ProcessMessages;
 if not FContinue then
 with SearchDictionary1 do
 State := State + [dsAbort]
end;
See also
NarrowSearch, Search

OnWrite property
Applies to
TUpdateDictionary

Declaration
property OnWrite: TNotifyEvent;
When DelayedWrites is True, TUpdateDictionary holds as many words as possible in
memory. When the MemoryLimit is reached, least recently used words are
compressed. When words can no longer be compressed, least recently used words
are written to disk and removed from the cache. This process can stall the application,
but the OnWrite event can be used to continue processing other tasks.
OnWrite is also called during a WriteCache or FlushCache. In these cases, the
process may be aborted if your application has directly initiated the process and you
have included dsMayAbort in State. OnWrite will not abort if dsMayAbort is not in
State. You would then resume the process later.
FlushCache is also called during Free, when the DataSource or Builder properties are
set, and when the DataSource.DataSet becomes active. These processes must not be
aborted.
Use the CacheCount property to determine the number of words in the cache. Use the
UnwrittenWords property to determine the number of unwritten words in the cached.
OnWrite will be called UnwrittenWords times. You should not call UnwrittenWords
during each OnWrite event since UnwrittenWords has to iterate through the entire cache
each time. Instead, save the value of UnwrittenWords before a call to WriteCache or
FlushCache and decrement it during each call to OnWrite.

Example
. . .
with UpdateDictionary1 do
 begin
 State := State + [dsMayAbort];
 FlushCache
 end;
. . .
procedure TMainForm.UpdateDictionary1Write(Sender: TObject);
begin
 Application.ProcessMessages;
 { do other processing }
 if dsCompress in UpdateDictionary1.State then
 { May not abort }
 else
 { FlushCache or WriteCache is being processed }
 if condition then
 UpdateDictionary1.State := [dsAbort] + UpdateDictionary1.State

end;
See also
CacheCount, DelayedWrites, FlushCache, MemoryLimit, UnwrittenWords, WriteCache

Panels property
Applies to
TUpdateStats

Declaration
property Panels: TStatPanels;
Determines which panels are visible.
Default is [spCache, spMemory].

Example
UpdateStats.Panels := [spCache..spLRU];

ProcessField method
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
procedure ProcessField(Field: TField; Location: LongInt);
ProcessField may only be called from within an OnProcessField event handler.

Example
procedure TForm1.MakeDictionary1ProcessField(Sender: TObject;

 Field: TField; Location: LongInt);
begin
 with TMakeDictionary(Sender) do
 if (Field.FieldName = 'Company') and
 (Field.AsString = 'IBM') then
 begin
 ProcessWord('IBM',Location);
 ProcessWord('International',Location);
 ProcessWord('Business',Location);
 ProcessWord('Machine',Location);
 end
 else ProcessField(Field,Location)
end;

See also
ProcessList, ProcessRecord, ProcessWord, OnProcessField

ProcessList method
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
procedure ProcessList(List: TStrings; Location: LongInt;
 Parse: Boolean);

The strings contained in List are added to the WordsTable or processed in a search. If
Parse is True, then each string is broken down into single words using WordDelims,
otherwise each entry in the List should be an individual word.
The strings or words contained in List should be in the same order as they appear in the
field. Do not attempt to eliminate duplicate words.
ProcessList may only be called from within an OnProcessField event handler.

Example
procedure TForm1.MakeDictionary1ProcessField(Sender: TObject;

 Field: TField; Location: LongInt);
var List: TStrings;
begin
 with TMakeDictionary(Sender) do
 if (Field.FieldName = 'Company') and
 (Field.AsString = 'IBM') then
 begin
 List := TStringList.Create;
 try
 List.Add('IBM International Business Machines');
 ProcessList(List,Location,True)
 finally
 List.Free
 end
 end
 else ProcessField(Field,Location)
end;
See also
ProcessField, ProcessPChar, ProcessRecord, ProcessWord, OnProcessField

ProcessPChar method
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
procedure ProcessPChar(S: PChar; Location: LongInt);
The words contained in S are added to the WordsTable or processed in a search. May
only be called from within an OnProcessField event handler.

See also
OnProcessField, ProcessField, ProcessList, ProcessWord

ProcessRecord method
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
procedure ProcessRecord(Location: LongInt);
A virtual procedure that may be overridden in order to provide record level control over a
search or controlling additions to the dictionary.

See also
OnProcessField, ProcessField, ProcessList, ProcessWord

ProcessWord method
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
procedure ProcessWord(S: string; Location: LongInt);
S is added to the WordsTable or processed in a search. No parsing is performed.
ProcessWord may only be called from within an OnProcessField event handler.
Call ProcessWord for each word contained in the field and in the same order as they
appear in the field. Do not attempt to eliminate duplicate words.

Example
procedure TForm1.MakeDictionary1ProcessField(Sender: TObject;

 Field: TField; Location: LongInt);
begin
 with TMakeDictionary(Sender) do
 if (Field.FieldName = 'Company') and
 (Field.AsString = 'IBM') then
 begin
 begin
 ProcessWord('IBM',Location);
 ProcessWord('International',Location);
 ProcessWord('Business',Location);
 ProcessWord('Machine',Location);
 end
 else ProcessField(Field,Location)
end;
See also
OnProcessField, ProcessField, ProcessList, ProcessRecord

RankMode property
Applies to
TSearchDictionary

Declaration
property RankMode: TRankMode;
Determines how records are ordered in the MatchTable or by CreateMatchTable.
There are three RankModes: rmNone, rmCount, and rmPercent. rmNone leaves the
records in index or natural order as determined by the IndexMode used to make the
WordsTable. Since the DataSource may be open on another index, the ordering of
records may not be consistent with other views of the table. rmCount adds a Rank field
to the table that contains a count of the matching words. rmPercent is like rmCount,
except it uses a 100 scale. Ranking, if any, occurs after a match table has been
created.
For searches using slNear or slPhrase SearchLogic, the ranking process only scores
the matching words in the record, not whether the words are near or in sequence of
each other.
The Rank field will be in the rightmost column. If a column already exists with a name
of Rank, it will alternatively be named Ranking, Score, or Scoring.
Be aware that if a search locates 100 records and a match table is created with a limit of
50 records, only those records (the first 50) are ranked. There may be higher ranking
records in the remaining 50 records.
Default is rmNone.

Example
with SearchDictionary1 do
 begin
 RankMode := rmCount;
 CreateMatchTable(Table1);
 end;
See also
CreateMatchTable, MatchTable

RecordCount property
Applies to
TSearchDictionary

Declaration
property RecordCount: LongInt;
Number of records matching the search criteria. Read only.

Example
with SearchDictionary1 do
 if RecordCount < 100 then CreateMatchTable(Table1);
See also
CacheCount, NarrowSearch, Search, SearchLogic, WordDelims

RecordLimit property
Applies to
TMakeDictionary, TSearchDictionary

Declaration
property RecordLimit: LongInt;
For TMakeDictionary, useful for limiting the build to the first RecordLimit records for
testing purposes. A zero value indicates no record limit.
For TSearchDictionary, if MatchTable is assigned and RecordLimit is less than or equal
to RecordCount, then the MatchTable is automatically filled with records matching the
search criteria up to RecordLimit records.
Default for TMakeDictionary is 0 and for TSearchDictionary is 25.

Example
MakeDictionary1.RecordLimit := 1000;
See also
Execute, MemoryLimit

RecordNo property
Applies to
TMakeDictionary

Declaration
property RecordNo: LongInt;
During phase one of execution, RecordNo is the record number being processed (e.g.
the fifth record being processed).
Run-time and read only.

Example
procedure TMainForm.MakeDictionary1PhaseOne(Sender: TObject);
begin
 with TMakeDictionary(Sender),PhaseForm do
 begin
 if dsStart in State then
 begin
 Gauge.MinValue := 0;
 { RecordCount is approximate for some table types! }
 Gauge.MaxValue := DataSource1.DataSet.RecordCount;
 Gauge.Progress := 0
 end;
 Gauge.Progress := RecordNo
 end
end;
See also
Execute, OnPhaseOne, OnPhaseTwo

RefreshInterval property
Applies to
TMakeProgress, TUpdateStats

Declaration
property RefreshInterval: LongInt;
The data displayed on the form is updated every RefreshInterval ticks. Setting
RefreshInterval to zero results in the data being updated every time the
TMakeDictionary or TUpdateDictionary processes a record.
Default is 500 (0.5 seconds).

Example
UpdateStats1.RefreshInterval := 0;

ResetStats method
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
procedure ResetStats;
Resets the following properties to zero: BlobBytesRead, BlobBytesWritten,
CacheEdits, CacheInserts, CacheReads, DiskDeletes, DiskEdits, DiskInserts,
DiskReads, and MaxMemoryUsed.

Example
with UpdateDictionary1 do
 if CacheEdits + CacheInserts > 0 then
 begin
 WriteCache;
 ResetStats
 end;
See also
BlobBytesRead, BlobBytesWritten, CacheEdits, CacheInserts, CacheReads,
DiskDeletes, DiskEdits, DiskInserts, DiskReads

Search method
Applies to
TSearchDictionary

Declaration
procedure Search(S: string);
Search is a shorthand equivalent to:

SearchDictionary1.SearchFor := S;
SearchDictionary1.SearchMode := smSearch;
SearchDictionary1.Execute;

To narrow an existing search, use NarrowSearch.

Example
with SearchDictionary1 do
 begin
 SearchLogic := slOr;
 Search('borland delphi paradox')
 end;
See also
Execute, NarrowSearch, SearchFor, SearchMode, WidenSearch

SearchFor property
Applies to
TSearchDictionary

Declaration
property SearchFor: string;
If SearchLogic is slExpression, then SearchFor contains the expression to be evaluated,
otherwise it contains the words to search for.

Example
with SearchDictionary1 do
 begin
 SearchFor := Edit1.Text;
 SearchLogic := slAnd;
 SearchMode := smSearch;
 Execute
 end;
See also
ErrorPos, NarrowSearch, Search, Search Examples, Search Strategies, TSearchLogic

SearchLogic property
Applies to
TSearchDictionary

Declaration
property SearchLogic: TSearchLogic;
There are seven search types: slAnd, slPhrase, slLike, slNear, slOr, slNot, and
slExpression.
The three most common are: slAnd which searches for records that contain all
instances of the words in the SearchFor property; slOr which searches for records that
contain at least one instance of the words in the SearchFor property; and slNot which
selects all records that do not contain instances of the words in the SearchFor property.
When IndexMode is imOrdinalIndex, slNot should only be used to narrow an existing
search, not to start a new search (see discussion in Search Strategies).
slLike searches for words that evaluate as the same using the Likeness function.
Wildcards are ignored.
slNear searches for two words that are within NearWord words of one another in a
field(s). If the number of words in the search is not two, an error is raised.
slPhrase searches for words in a specific order of appearance in the field(s).
slExpression enables expression evaluation using AND, OR, NOT, LIKE, NEAR,
"quoted phrase searches", and parentheses. For more information on this type of
search, see Expression Evaluation.

Example
with SearchDictionary1 do
 begin
 SearchFor := Edit1.Text;
 SearchLogic := slOr;
 SearchMode := smSearch;
 Execute
 end;
See also
ErrorPos, NarrowSearch, Search, Search Examples, Search Strategies, TSearchLogic

SearchMode property
Applies to
TSearchDictionary

Declaration
property SearchMode: TSearchMode;
There are three search modes: smSearch, smNarrow, smWiden.
smSearch conducts a new search when Execute is called.
smNarrow ANDs the contents of the current search with the previous search when
Execute is called.
smWiden ORs the contents of the current search with the previous search when
Execute is called.

Example
with SearchDictionary1 do
 begin
 SearchFor := 'Borland';
 SearchLogic := slAnd;
 SearchMode := smNarrow;
 Execute
 end;
See also
Execute, NarrowSearch, Search, SearchFor, SearchLogic, WidenSearch

Soundex function
Declaration
function Soundex(const S: string): string;
The standard Soundex function returns a four character string beginning with the first
letter of S, followed by three numbers between 1 and 6 (e.g. 'B253'). This is a slightly
modified version of the standard Soundex. Instead of returning a four character string,
a five character string is returned with the first two characters being the first two letters
of S and the remaining characters being the numbers 1..6 (e.g. 'BE253'). This
modification improves its performance as a Likeness function.
If you have enabled the HaveSysTools compiler directive in TARUBICN.INC, Soundex
will rely on SoundexS or SoundexL to perform most of the conversion. Generally, there
is no functional difference between these routines. However, Soundex performs no case
conversion since it assumes S is already in uppercase, while SoundexS and SoundexL
perform AnsiUpperCase conversions. This would only become an issue if the
HaveSysTools compiler directive were changed after a dictionary build since the version
of Soundex used to create the dictionary and the version used to search it would be
slightly different.

Example
SearchDictionary1.Likeness := Soundex;
See also
LikeFieldSize, Likeness

SourceRange property
Applies to
TSearchDictionary

Declaration
property SourceRange: LongInt;
Searches may be conducted without setting a DataSource by setting SourceRange to a
value larger than the number of records (if IndexMode is imRecordNo or imSeqNo) in
the DataSource or the difference between the highest and lowest index values (if
IndexMode is imOrdinalIndex) of the DataSource.
Another way of determining the appropriate SourceRange is to use the value of
IndexRange when DataSource is set (SourceRange is basically a substitute for
IndexRange when there is no DataSource).
For SQL tables, using SourceRange eliminates a call to DataSource.DataSet.Last and
may speed up some operations. When used in conjunction with MinOrdIndex,
MinOrdIndex plus SourceRange must be greater than or equal to the maximum value of
the index. This is not checked.
Run-time.

Example
SearchDictionary1.SourceRange := 100000;
See also
DataSource, IndexMode, IndexRange, MinOrdIndex

SourceReads property
Applies to
TSearchDictionary

Declaration
property SourceReads: LongInt;
Number of times the DataSource has been read. Reads occur when
CreateMatchTable is called, a search uses SubFieldNames, or if SearchLogic is slNear
or slPhrase. Use ResetStats to reset this indicator.
Run-time.

Example
SourceReadsLabel.Caption :=
IntToStr(SearchDictionary1.SourceReads);
See also
CreateMatchTable, DataSource, ResetStats, SearchLogic, SubFieldNames

State property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property State: TDictionaryStates;
The current state of the component.
There are four primary states:

· dsPhaseOne indicates phase one of TMakeDictionary.Execute
· dsPhaseTwo indicates phase two of TMakeDictionary.Execute
· dsUpdating indicates TUpdateDictionary is performing an update
· dsSearching indicates TSearchDictionary is performing a search

For all the primary states except dsUpdating, the State may be additionally qualified as
dsStart or dsDone which are set at the beginning and ending of a process.
For TSearchDictionary, State may also be qualified by dsMatching, which is set during
the creation of a match table, or by dsLocating, which is set during a search that
requires the DataSource to be read (i.e. when SearchLogic is slNear and slPhrase).
An empty State indicates the component is idle. A State of dsAbort indicates that the
process was aborted.
The only time an application may change State is during OnPhaseOne, OnPhaseTwo,
or OnSearch event, and then the only valid change is to add [dsAbort] to the State (see
example in OnPhaseOne property).
Run-time.

Example
procedure TMainForm.MakeDictionary1PhaseOne(Sender: TObject);
begin
 with TMakeDictionary(Sender),PhaseForm do
 begin
 if dsStart in State then
 begin
 Gauge.MinValue := 0;
 { RecordCount is approximate for some table types! }
 Gauge.MaxValue := DataSource1.DataSet.RecordCount;
 Gauge.Progress := 0
 end;
 Gauge.Progress := RecordNo
 end
end;
State = libRubicon.getProperty(hMake, rblState)

See also
OnPhaseOne, OnPhaseTwo

StrictChecking property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property StrictChecking: Boolean;
When True, this only allows the imOrdinalIndex option to be used when the table is
open on a single ordinal field primary key or unique secondary index. When False, the
restriction on the ordinal field is relaxed to include all other field types. This assumes
that the field will evaluate to a LongInt value. Floating point fields will only work if there
are no fractional values in the index (this is not checked).
StrictChecking also determines the level of checks performed on the IndexFieldName.
If set to True, checks are performed to confirm that the IndexFieldName is a single field
unique index and that it's DataType is ftSmallInt, ftWord, or ftInteger. When
StrictChecking is False, the only check performed is that the IndexFieldName is a
defined field in the table. The value of StrictChecking may affect how many field(s) are
displayed in the Delphi Object Inspector for the IndexFieldName property.
Default is True.

Example
UpdateDictionary1.StrictChecking := False;
See also
IndexFieldName, IndexMode

SubFieldNames property
Applies to
TSearchDictionary

Declaration
property SubFieldNames: TStrings;
By default, all searches are conducted against all the fields included in the WordsTable.
However, SubFieldNames can be used to search against a subset of fields (searches
may not be conducted on excluded fields without rebuilding the WordsTable).
The words in the WordsTable are selected on the basis of available fields in the
DataSource (as controlled by the field editor), the DataTypes/FieldTypes property, and
the FieldNames property. When SubFieldNames is not empty, the search is further
narrowed to the field names included in SubFieldNames.
Using SubFieldNames forces all searches to read the DataSource (and related
DataSets), and therefore slows the search process. Before any reads take place, the
words in the search and the SearchLogic are used to narrow the list of possible records.
This means that fairly specific searches will only read a small number of records, and
search performance will remain fast.
However, very broad searches, and especially searches containing slNot SearchLogic
(which will be forced to read each record of the DataSource), will have their
performance adversely affected. You may want to use a timer and the OnSearch
event to abort the search after some period of time and advise the user to take a
different approach to the search.
Example
SearchDictionary1.SubFieldNames := ListBox1.Items;
See also
DataTypes, FieldNames, FieldTypes

TDataType type
Declaration
TDataType =
(dtString,dtSmallInt,dtInteger,dtWord,dtBoolean,dtFloat,
 dtCurrency,dtBCD,dtDate,dtTime,dtDateTime,

 {$IFDEF Win32} dtAutoInc, {$ENDIF}
 dtBytes,dtVarBytes,dtBlob,dtMemo);

TDataType is a subset of TFieldType (ftUnknown, ftGraphic, ftFmtMemo, ftParadoxOle,
ftDBaseOle, and ftTypedBinary are omitted). The only purpose of TDataType is to
provide a set small enough to appear on the property editor (a set of TFieldType
exceeds the 16 bit set limit of the property editor).

See also
DataTypes, FieldTypes, TFieldTypes

TDataTypes type
Declaration
TDataTypes = set of TDataType;
TDataType is a subset of TFieldTypes (ftUnknown, ftGraphic, ftFmtMemo,
ftParadoxOle, ftDBaseOle, and ftTypedBinary are omitted). The only purpose of
TDataTypes is to provide a set small enough to appear on the property editor
(TFieldTypes exceeds the 16 bit set limit of the property editor).

See also
DataTypes, FieldTypes, TDataType, TFieldTypes

TDictionaryState type
Declaration
TDictionaryState = (dsPhaseOne, dsPhaseTwo, dsUpdating,
dsSearching,
 dsMatching, dsLocating, dsCompress, dsStart,

dsDone, dsAbort, dsMayAbort);

State Meaning
dsPhaseOn
e

Indicates TMakeDictionary is in phase one of execution

dsPhaseTw
o

Indicates TMakeDictionary is in phase two of execution

dsUpdating Indicates TUpdateDictionary is in the process of updating
dsSearchin
g

Indicates TSearchDictionary is in the process of searching

dsMatching Indicates TSearchDictionary is in the process of creating a match
table

dsLocating Indicates TSearchDictionary is in the process of locating words in
the DataSource due to the use of SubFieldNames and/or slNear or
slPhrase SearchLogic

dsCompres
s

Indicates that the cache is being compressed

dsStart Used in conjunction with dsPhaseOne, dsPhaseTwo, dsSearching,
and dsCompress to indicate the start of the process

dsDone Same as dsStart, but indicates the end of the process
dsAbort Setting this state aborts the process
dsMayAbort Used by TUpdateDictionary to indicate that the OnWrite event may

be aborted

See also
TDictionaryStates, State

TDictionaryStates type
Declaration
TDictionaryStates = set of TDictionaryState;
See also
TDictionaryState, State

TFieldTypes type
Declaration
TFieldTypes = set of TFieldType;
See also
DataTypes, FieldTypes, TDataType

TIndexMode type
Declaration
TIndexMode = (imOrdinalIndex, imRecordNo, imSeqNo, imNone);
See also
IndexMode, Index Modes

TMakeProgress component
TMakeProgress is a drop in form with will automatically configure itself to display the
progress of a TMakeDictionary build. Double or right click at run time on the form to
set or hide build statistics. The OnPhaseOne and OnPhaseTwo event properties of the
TMakeDictionary it attaches to will not display anything, but these properties are
actually set.
Properties include AutoClose (close automatically when done), Expanded (shows more
statistics), Form (pointer to the form, run-time), Maker (source TMakeDictionary), and
RefreshInterval (how often to update).
(Delphi only Paradox users see MAKEPROG.FSL)

TProcessFieldEvent type
Declaration
TProcessFieldEvent = procedure(Sender: TObject; Field: TField;

 Location: LongInt) of object;
Event type for OnProcessField.

See also
OnProcessField

TRankMode type
Declaration
TRankMode = (rmNone, rmCount, rmPercent);
See also
RankMode

TStatPanel type
Declaration
TStatPanel = (spCache, spMemory, spWords, spLRU);
See also
Panels, TStatPanels

TStatPanels type
Declaration
TStatPanel = set of TStatPanel;
See also
Panels, TStatPanel

TSearchLogic type
Declaration
TSearchLogic = (slAnd, slPhrase, slNear, slLike, slOr, slNot,

 slExpression);
See also
SearchLogic

TSearchMode type
Declaration
TSearchMode = (smSearch, smNarrow, smWiden);
See also
SearchMode

TStringFunc type
Declaration
TStringFunc = function(const S: string): string;
Function to convert a mixed case string to upper case.

See also
Likeness, UpperCase

TUpdateStats component
TUpdateStats drop in form that will automatically configure and display itself when
TUpdateDictionary is used. Primarily designed for monitoring the update process
during development. Double or right click at run time on the form to set or hide various
panels. Open rbUpdate.pas in the Delphi IDE to see a description of all the properties
displayed. Displaying the Words or LRU panels will slow performance as these panels
require a call to a routines which has to iterate through the cache.

Panel Description
Cache Displays all the major properties
Memory Displays current and maximum memory usage, as well as the memory

limit
Words Displays the number of uncompressed, compressed, and unwritten

words in the cache. The number or uncompressed and compressed
words plus the number of omit words (not displayed) make up all the
words in the cache (CacheCount, not displayed).

LRU Least Recently Used statistics. The highest LRU is the most recently
used word, the lowest is the least recently used. The Current LRU is
the index of the most recently used word. Words with LRUs greater
than the Compress LRU are held in memory uncompressed. If the
LRU is less than or equal to Compress LRU and greater than Flush
LRU, the word is held in memory and compressed. Words with LRUs
less than or equal to Flush LRU are removed from memory.

Properties include Expanded (displays three columns of data instead of two), Form
(pointer to the form, run-time), Panels (which panels to display), RefreshInterval (how
often to update the data), and Updater (source TUpdateDictionary).
The component does not hook itself into the TUpdateDictionary.OnWrite event. You
can do this by adding the following to the OnWrite event:
 UpdateStats1.UpdateStats;

(Delphi only)

TUpdateTable component
The TUpdateTable component is a descendent of TTable that has the
TUpdateDictionary AfterDelete, AfterPost, BeforeDelete, BeforeEdit, and BeforeInsert
methods build in. TUpdateDictionary checks to see if its DataSource.DataSet is a
TUpdateTable, and if so, will automatically connect the appropriate methods.
TUpdateTable adds one property TTable component, UpdateStats.
(Delphi only)

UnwrittenWords property
Applies to
TUpdateDictionary

Declaration
property UnwrittenWords: LongInt;
If DelayedWrites is False, always returns zero, otherwise returns the number of words in
the cache that have been edited, but not written to disk. This property requires that all
the words in the cache be checked, so performance sensitive applications should
minimize the number of calls to this property.
Run-time.

Example
UnwrittenWordsLabel.Caption :=

IntToStr(UpdateDictionary1.UnwrittenWords);
See also
CacheCount, DelayedWrites, OnWrite

Updater property
Applies to
TUpdateStats

Declaration
property Updater: TUpdateDictionary;
Determines the TUpdateDictionary whose statistics are being displayed.

Example
UpdateStats1.Updater := UpdateDictionary2;

UpdateStats property
Applies to
TUpdateTable

Declaration
property UpdateStats: TUpdateStats;
If set, the TUpdateTable will call UpdateStats after every change to the table.

Example
UpdateTable1.UpdateStats := UpdateStats1;

UpperCase property
Applies to
TMakeDictionary , TSearchDictionary , TUpdateDictionary

Declaration
property UpperCase: TStringFunc;
Function used to convert words to upper case. Since this routine is called so often, it is
critical for performance reasons to make it as efficient as possible. AnsiUpperCase
was not used since SysUtils.UpperCase is much faster. However, international users
may prefer to use AnsiUpperCase (or, if $H-, AnsiUpperCaseShort32).
Case conversion can be turned off by defining your own upper case function that
performs no case conversion.
Default is SysUtils.UpperCase. Run-time.

Example
MakeDictionary1.UpperCase := AnsiUpperCase;
See also
Builder

WidenSearch method
Applies to
TSearchDictionary

Declaration
procedure WidenSearch(S: string);
WidenSearch is a shorthand equivalent to:

SearchDictionary1.SearchFor := S;
SearchDictionary1.SearchMode := smWiden;
SearchDictionary1.Execute;

Example
with SearchDirectory1 do
 begin
 SearchLogic := slAnd;
 Search('delphi paradox');
 WidenSearch('borland')
 end;
See also
Execute, NarrowSearch, Search, SearchFor, SearchLogic, SearchMode

WordDelims property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property WordDelims: string;
These characters define the beginning and end of a word. Control characters can be
entered as ^M and ^J. To enter a ^, use ^^.
The most common delimiters are spaces, commas, and periods. You will probably
want to include other punctuation (colon, semi-colon, double quotes, single quotes,
question marks, exclamation marks), parentheses, braces, brackets, and
mathematical symbols.
Whether you want to include any of these @#$%&\~ depends on your database.
In some instances, you may consider using numbers as word delimiters. This will
effectively eliminate all numbers from the dictionary.
Be aware that the period delimiter causes havoc with numerical values embedded in
string or memo fields: a number like '19.95' would become two words: '19' and '95'.
Word delimiters are not applied to any numerical, boolean, date, or time fields, only to
string and memo fields.
The same set of WordDelims used to make the dictionary should be used when
searching or updating the dictionary.

Example
UpdateDictionary1.WordDelims := ' ,.(){}[]!;:?/\';
See also
Execute , NarrowSearch , Search

WordFieldSize property
Applies to
TMakeDictionary

Declaration
property WordFieldSize: Integer;
WordFieldSize defines the size of the Word field in the WordsTable. Changing the
value of WordFieldSize causes the WordsTable to be recreated. While words added to
the WordsTable that exceed WordFieldSize will be processed (albeit they are
truncated), you run the risk of a key violation that will terminate phase two of the
execution process.
Setting WordFieldSize too low causes a number of problems: it will increase the
number of key violations during the building of a dictionary, it will increase the number of
false matches during a dictionary update, and it can make searches more ambiguous.
Default is 20.

Example
MakeDictionary1.WordFieldSize := 25;
See also
WordsTable

WordsTable property
Applies to
TMakeDictionary, TSearchDictionary, TUpdateDictionary

Declaration
property WordsTable: TTable;
This table contains the results of the Execute procedure, is the table updated by
TUpdateDictionary, and is used by Search and NarrowSearch to locate records.
For TMakeDictionary, if table does not exist, one will be created. If the table does exist,
it will be recreated to ensure the field sizes are up to date. Because TMakeDictionary
creates and /or recreates this table, the table should be inactive in design mode in order
to avoid the 'Table is busy' error.
For TSearchDictionary and TUpdateDictionary, the table must exist.

Example
SearchDictionary1.WordsTable := Table1;
See also
DataSource

WriteCache method
Applies to
TUpdateDictionary

Declaration
procedure WriteCache;
Forces any unwritten records in the memory cache to be written to disk.

Example
with UpdateDictionary1 do
 if CacheEdits + CacheInserts > 0 then
 begin
 WriteCache;
 ResetStats
 end;
See also
CacheEdits, CacheInserts, DelayedWrites, FlushCache, ResetStats

Basic Methods & Properties
DataSource property
DataTypes property
Execute method
FieldNames property
FieldTypes property
IndexMode property
MatchCount property
MatchTable property
MemoryLimit property
MinWordLen property
NarrowSearch method
RankMode property
RecordCount property
Search method
SearchFor property
SearchLogic property
SearchMode property
WidenSearch method
WordDelims property
WordsTable property

Intermediate Methods & Properties
AfterDelete method
AfterPost method
AnyChar property
BeforeDelete method
BeforeEdit method
BeforeInsert method
BlobBytesRead property
BlobBytesWritten property
Builder property
CacheCount property
CacheEdits property
CacheInserts property
CacheReads property
CreateMatchTable method
DiskDeletes property
DiskEdits property
DiskInserts property
DiskReads property
IndexFieldName property
MatchingWords method
MaxMemUsed property
MemCompression prop.
MemoryUsage property
NearWord property
OneChar property
RecordLimit property
RecordNo property
SourceReads property
State property
StrictChecking property
SubFieldNames property

Advanced Methods & Properties
AltMemMgr property
BatchAdd method
BatchDelete method
BlobFieldSize property
DelayedWrites property
EDictionary object
ErrorPos property
FileCompression property
FindXxxx methods
FlushCache method
IndexRange property
KeyViolName property
LikeFieldSize property
Likeness property
LoadOmitsFromTable
MatchBits property
Matches method
MinIndex property
MinOrdIndex property
OmitList property
OnPhaseOne property
OnPhaseTwo property
OnProcessField property
OnSearch property
ProcessField method
ProcessList method
ProcessPChar method
ProcessRecord method
ProcessWord method
ResetStats method
SourceRange property

UnwrittenWords property
UpperCase property
WordFieldSize property
WriteCache method

Paradox Interface
The Paradox interface to the Rubicon DLL uses the same naming conventions as used
in the Delphi code. Rubicon for Paradox uses the Libraries and handles to replace the
equivalent Delphi objects. Where the Delphi syntax is:

Object.Method(paramater list)

The Paradox interface is:
Library.Method(Handle, parameter list)

For Delphi properties the syntax is:
Object.Property := Value;
Value := Object.Property;

The Paradox interface is:
Value = Library.getProperty(Handle, rbxPropertyName)
Library.setProperty(Handle, rbxPropertyName, Value)

where
rbxPropertyName is a property constant
Value is the variable to set or get

rbx may be one of the following:
rbbXxxx is a Logical or Boolean property
rbfXxxx is a function pointer address
rbhXxxx is a Handle property
rblXxxx is a LongInt property
rbsXxxx is a String property

For a complete listing of constants, refer to RUBICON.LSL.
Some properties may be set either by a constant or a string. The following are
equivalent:

libRubicon.setProperty(Handle, rblIndexMode, imSeqNo)
libRubicon.setProperty(Handle, rbsIndexMode, "imSeqNo")

addLookupField method
Applies to
Rubicon for Paradox

Declaration
method addLookupField(Handle LongInt, KeyFields String,
 LookupTable String, LookupKeyFields String,

LookupResultField String)
Use this method to build a multi table data model by adding lookup fields to the
DataSource. The new lookup field is given the name LookupResultField. If this name
already exists in the DataSource, the name becomes LookupTable +
LookupResultField.

Example
libRubicon.setProperty(hMake, rbsDataSource, ":project:orders")
libRubicon.addLookupField(hMake, "CustID", ":project:customer",
 "CustNo", "Name")
libRubicon.setProperty(hMake, rbsFieldNames, "Name")

check method
Applies to
Rubicon for Paradox

Declaration
method check(Code LongInt)
method checkErrorCode()
Used to check the result codes returned by direct calls to the Rubicon API. If an error
occurs, check calls fail(). checkErrorCode() is the same, but used for API calls that do
not return error codes directly.

Example
Handle = rbiCreateDictionary(TMakeDictionary)
libRubicon.checkErrorCode()
libRubicon.check(rbiSetProperty(Handle, rblMemoryLimit,
16000000))

convertWorkPriv method
Applies to
Rubicon for Paradox

Declaration
method convertWorkPriv(S String) String
The Rubicon DLL can handle table names that contain aliases that are defined in the
BDECFG. However, the DLL cannot resolve table names that contain :WORK:
or :PRIV:. To work around this limitation, simply enclose any table name parameter
with convertWorkPriv.

Example
libRubicon.setProperty(hMake, rbsDataSource,
 libRubicon.convertWorkPriv(fldSourceTable.value))

enumHandle method
Applies to
Rubicon for Paradox

Declaration
type
 InfoArray = DynArray[] String
endType
method enumHandle(Handle LongInt, var Ary InfoArray)
A very useful way of displaying all the property settings for the Handle.

Example
libRubicon.enumHandle(hMake,Properties)
Properties.view("Make Properties")

getLocation method
Applies to
Rubicon for Paradox

Declaration
method getLocation(Handle LongInt, var TC TCursor) LongInt
Returns the location of the cursor within the table. The value of location is dependent
on which record the cursor is currently positioned on and the IndexMode.

Example
Location = libRubicon.getLocation(hSearch, TC)
See also
gotoLocation

getPropertyType method
Applies to
Rubicon for Paradox

Declaration
method getPropertyType(Property LongInt) String
Returns the property type of the property: Function, Handle, Logical, LongInt, or String.

Example
See getProperty example

getProperty method
Applies to
Rubicon for Paradox

Declaration
method getProperty(Handle LongInt, Property LongInt) AnyType
method getPropertyL(Handle LongInt, Property LongInt) LongInt
method getPropertyS(Handle LongInt, Property LongInt) String
Low level routines to get properties of a specific type.

Example
method getProperty(Handle LongInt, Property LongInt) AnyType
var
 L LongInt
 PropType String
endVar
 PropType = getPropertyType(Property)
 if PropType = "String" then
 return getPropertyS(Handle,Property)
 else
 L = getPropertyL(Handle,Property)
 if PropType = "Logical" then

if L = 0 then
 return True
else
 return False
endIf

 else
return L

 endIf
 endIf
endMethod
See also
setProptery

gotoLocation method
Applies to
Rubicon for Paradox

Declaration
method gotoLocation(Handle LongInt, var TC TCursor,
 Location LongInt) Logical
Moves the cursor to Location.

Example
libRubicon.getLocation(hSearch, TC, Location)
See also
getLocation

MakeProg form
Applies to
Rubicon for Paradox

Declaration
MakeProg.fsl

A form that displays a progress bar and statistics while the WordsTable is being built.
MakeProg has not been optimized to work with SQL tables.

Example
if F.open("MakeProg") then
 F.build(hMake)
 F.wait()
 F.close()
endIf

Rubicon Library
Applies to
Rubicon for Paradox

Declaration

This library contains all the constants, methods, and types needed to implement
Rubicon for Paradox. The following methods closely match their Delphi equivalents
and have already been documented in the Reference Section.
method afterDelete(Handle LongInt)
method afterPost(Handle LongInt, var TC TCursor)
method batchAdd(Handle LongInt, var TC TCursor)
method batchDelete(Handle LongInt, var TC TCursor)
method beforeDelete(Handle LongInt, var TC TCursor)
method beforeEdit(Handle LongInt, var TC TCursor)
method beforeInsert(Handle LongInt)
method createDictionary(DictionaryType LongInt) LongInt
method execute(Handle LongInt)
method findFirst(Handle LongInt, var TC TCursor) Logical
method findLast(Handle LongInt, var TC TCursor) Logical
method findNext(Handle LongInt, var TC TCursor) Logical
method findPrior(Handle LongInt, var TC TCursor) Logical
method flushCache(Handle LongInt)
method getMatchingWords(Handle LongInt) String
method loadOmitsFromTable(Handle LongInt, TableName String,

 FieldName String)
method writeCache(Handle LongInt)

search method
Applies to
Rubicon for Paradox

Declaration
method search(Handle LongInt, TimeOut LongInt)
Same as execute, but places a time limit of TimeOut milliseconds.

Example
libRubicon.search(hSearch, 5000) ;// give up after 5 seconds
See also
execute

setProperty method
Applies to
Rubicon for Paradox

Declaration
method setProperty(Handle LongInt, Property LongInt, Value
AnyType)
method setPropertyL(Handle LongInt, Property LongInt, Value
LongInt)
method setPropertyS(Handle LongInt, Property LongInt, Value
String)
Low level routines to set properties of a specific type.

Example
method setProperty(Handle LongInt, Property LongInt, Value
AnyType)
var
 PropType String
endVar
 PropType = getPropertyType(Property)
 if PropType = "String" then
 setPropertyS(Handle,Property,Value)
 else
 if (PropType = "Logical") and

 (Value.dataType() = "Logical") then
Value = LongInt(Value)

 endIf
 setPropertyL(Handle,Property,Value)
 endIf
endMethod
See also
getProptery

setMenuAction method
Applies to
Rubicon for Paradox

Declaration
method setMenuAction(Handle LongInt, MenuID LongInt, Tics
LongInt)
The Rubicon DLL will post a message to the calling form with id MenuID every Tics
milliseconds during the execution of a dictionary build or search.

Example
See code in MakeProg.fsl

Template form
Applies to
Rubicon for Paradox

Declaration
Template.fsl

This form is designed for 16 bit Paradox users. It contains all the constants, types, and
uses statements necessary to construct a form using Rubicon for Paradox. In addition,
it contains open and close methods that will create the necessary handles. You will
need to edit the open method and select which handles you want created.
This form is not necessary for Paradox 7 32 bit users as this version implements the
extended uses syntax which imports all the constants, types, and uses statements from
Rubicon.lsl without having to redeclare them.

Definitions
Search Table: The table to be searched.
Words Table: A table that contains all the words used in the search table and their
locations with the table.
Dictionary: Same as the words table.
Ordinal: A SmallInt, Word, Integer, or LongInt field type.

Common Questions
Does Rubicon handle memo fields?
Yes, Rubicon handles all standard field types. Memo fields are limited to 64k in 16 bit
applications. Nonstandard fields such as ftBlob, ftVarBytes, and 16 bit memo fields
exceeding 64k can be handled via the OnProcessField event handler.
How can I expand acronyms?
Use the OnProcessField event.
How can I use TSearchDictionary as a filter for my DataSource?
In Delphi 2.0, you may simply define an OnFilterRecord event handler and test whether
the current record matches the search criteria by calling SearchDictionary1.Matches.
In Delphi 1.0, you will have to define a dbiAddFilter routine or equivalent.
Can I reduce the size of WordsTable by setting WordFieldSize to a lower value?
Yes, but you run the risk of increasing the number of key violations, false matches
during updates, and ambiguous search results.
How can I limit a dictionary build to a maximum amount of RAM?
In order to conserve RAM, be sure to set MemoryLimit to the desired value. Then in
the OnPhaseOne event handler, include code that adds dsAbort to State when the
maximum amount of RAM is exceeded (this should be approximately 512kb higher than
MemoryLimit).
Does the AltMemMgr option replace the standard Delphi memory manager?
No, it merely supplements the standard memory manager during GetMem and
FreeMem calls, and only is used for cache memory.
MemoryUsage includes what kinds of memory?
It is primarily made up of the memory used to cache the indexes. If AltMemMgr is True,
it also includes any memory in the memory pool. Some internal buffers are also
included. It does not included the memory used by the FCache data structure (a
StDictionary), various TLists, and other ancillary data structures.
My application seems to stall while using TUpdateDictionary. Can this be
avoided?
If you have set DelayedWrites to True, TUpdateDictionary will write records to disk
when the cache is full. You may use the OnWrite event to do some processing while
the cache is being compressed. You should not interrupt this process. Calls to
WriteCache or FlushCache may also cause delays. Here, you may abort the process
and then resume it later.

Troubleshooting
The blob portion of the WordsTable seems excessively large
Check to see if the table type being used has a default or minimum blob size. If so,
see if the default size can be reduced to 32 or 64 bytes.
Words seem to be missing or incorrectly associated in the dictionary
If the length of the words in question exceeds the WordFieldSize property, increase
WordFieldSize and rebuild the dictionary.
Searches aren't finding the correct records
If the dictionary was made with a non-zero value for MinOrdIndex, be sure you are
using the same value for all subsequent searches and updates. Also check that the
same values for IndexMode and WordDelims were used to build and/or update the
dictionary and the searches.
"Decompress Buffer Too Small" error raised during searches
TSearchDictionary allocates a decompression buffer to hold an index of IndexRange
size, but has tried to read an index with a size greater than IndexRange. This is
usually a result of the properties of the TSearchDictionary not being set to the same
values as TMakeDictionary or TUpdateDictionary. Check the IndexMode,
MinOrdIndex, and SourceRange properties. It may also be caused by having records
deleted from the DataSource without having updated the WordsTable.
Specifying the :WORK: or :PRIV: alias in Paradox for Windows doesn't work
These aliases are know only to Paradox for Windows. See the method
convertWordPriv to use these aliases with the DLL.
A slOr search on '*' followed by a slNot search should return zero matches, but
doesn't
The IndexMode is probably imOrdinalIndex and what is being returned are the gaps
between index values. Since these records don't really exists, a call to
CreateMatchTable will return an empty table. The correct way to perform the above
search is to follow the slOr search followed by a slNot NarrowSearch. You may also
encounter this problem when using the imRecordNo or imSeqNo IndexModes and
RecordLimit is set to a positive value.
All the values for WordCount and BlobSize are zero in my WordsTable
Check to be sure that the dbiWrite compiler option in TARUBICN.INC is disabled. If
enabled and the database format of WordsTable does not support 32 bit integers, then
the problems described will result.
Words at the end of memos are not indexed
16 bit applications are limited to memo lengths of 64K. If possible, compile your
application with Delphi 2.
The Matches method doesn't seem to be working

Matches returns a value that indicates whether the current record in the DataSource
meets the search criteria. You may have to call UpdateCursorPos before calling
Matches. In addition, when the IndexMode is imRecordNo or imSeqNo and Matches is
called from within a filter, it may not be possible to synchronize the DataSet to the
physical record number.
Number of WordsTable records varies with table type
Normally, the number of unique words should not vary with table type. Differences can
arise when the source table(s) contain nonstandard characters that are treated
differently by the table types, and therefore result in key violations that cause a word to
be excluded from the table. For instance, one table may interpret Canada and Cañada
as two different words, the other may treat them as the same (and thus one would be
excluded because of a key violation).
Processing TMakeDictionary.Execute slows down exponentially
If using Delphi 2.00/2.01, you have probably run into the memory fragmentation bug.
Set the AltMemMgr property to True. See Delphi 2.0 Memory Fragmentation for more
details.

How to Order
To receive a registered version of Rubicon, technical support, along with free updates of
version 1.x, just send $99 U.S. with the order form that appears at the end of this
document. Or you may email your name, address, MasterCard or Visa number, and
expiration date to Tamarack Associates at sales@tamaracka.com or
72365.46@compuserve.com. Sales tax will be added to California orders. Delivery is
free via CompuServe or Internet, $5 in North America (Canada, Mexico, & U.S)., $10
outside of North America. Please specify 3.5" or 5.25" diskettes.
Rubicon for Delphi includes all source code (except the SysTools units). Rubicon for
Paradox comes with unrestricted DLLs.
Rubicon for Delphi and Rubicon for Paradox are also available through CompuServe
SWREG for $99 U.S. The SWREG registration ID is 11536 for the Delphi version,
13217 for the Paradox version.
Order both the Delphi and Paradox versions for $149US. Existing users of one version
may purchase the other version for $50US. These must be ordered directly from
Tamarack Associates.
Orders are generally filled the day they are received, with the exception of holidays and
vacations. If your order has not been filled within 48 hours, please email us at
admin@tamaracka.com.
Please read the Purchase Agreement before registering.

Other Products from Tamarack Associates
TtaDBMRO 2.0 is a popular data aware control for Borland's Delphi development
environment. Building on the success of TtaDBMRO 1.x, version 2.0 delivers a 32 bit
performance and compatibility while maintaining the ability to be used in both 16 and 32
bit environments.
TtaDBMRO provides a TDBCtrlGrid-like control that allows the developer to display data
aware controls in a scrollable manner.
Unlike Borland's TDBCtrlGrid, TtaDBMRO supports all Borland field data aware
controls, compatible with both Delphi 1.0 and 2.0, allows the use of data aware controls
with different DataSources, provides several ways to customize the appearance of
records, and supports titles.
TtaDBMRO is compatible with InfoPower 1.2, Orpheus 2.0, TDBLookupComboPlus
4.1, and TDBComboBoxPlus 2.1. It has been tested running under Windows 3.11,
Windows 95, and Windows NT 3.51.
Trial run and demonstration versions of TtaDBMRO can be found in the Delphi and
Bdelphi forums on CompuServe, Library 22, MRO.ZIP and MRODEMO.ZIP. These
files are also available on many Internet sites.
TtaDBMRO is available directly from Tamarack Associates for $25.00US, and includes
free 2.xx updates and support via email. The product may also be ordered via
CompuServe shareware registration ID 8213 for $29.95US.
Look for Rubicon for Visual dBase and Rubicon for C++ in Q1'97.

Version History
The latest version of Rubicon can always be found on our web site,
www.tamaracka.com, or on CompuServe in the Delphi and BDelphi forums, Lib 22 (3d
Party Products), in RUBICON.ZIP.
10/18/96 Version 1.20 BatchAdd and BatchDelete procedures added

IndexFieldName property added
OnWrite event added to TUpdateDictionary
AfterDelete method added to TUpdateDictionary
LoadOmitsFromTable method added
MakeWordDelims function added
TMakeProgress component added
TUpdateStats component added
TUpdateTable component added
dsMayAbort added to TDictionaryState
MinIndex made visible to TMakeDictionary &

TUpdateDictionary
Limit parameter removed from CreateMatchTable procedure
slAnd searches no longer return records if >=1 word is not

found
SourceRange & MinOrdIndex behavior changed to eliminate
 the use of TTable.First/Last with SQL tables.
IsIndexUnique rewritten to eliminate DBI calls
Fixed TMakeDictionary handling of dbf files w/ deleted

records
FlushCache frees all memory when AltMemMgr = True
TUpdateDictionary improperly deleting words under Delphi

1.0
Delphi Tamarack tab renamed Rubicon
Rubicon for Paradox released

09/06/96 Version 1.11 Error messages moved to resource file
Exceptions return ErrorCode (see EDictionary)
Property editors added for FieldNames & SubFieldNames
tarconst.pas, taredit.pas/dfm, tarubicn.rc files added
Duplicate field name problem fixed in CreateMatchTable
TUpdateDictionary.Builder can no longer be set to itself
IndexName required for SQL tables fixed

08/20/96 Version 1.10 slNear, slLike, slPhrase, & slExpression logic types added
dsMatching & dsLocating added to TDictionaryState
Likeness & LikeFieldSize properties added to

TMakeDictionary
The following properties were added to TSearchDictionary:
 DataTypes, ErrorPos, FieldNames, FieldTypes, NearWord,

 OnProcessField, RankMode, and SourceReads.
 The following procedures were added to TSearchDictionary

 MatchingWords, ProcessField, ProcessList,
ProcessPChar,
 ProcessRecord, and ProcessWord
 MatchingWords procedure added to TSearchDictionary
 ftAutoInc fields become ftInteger in CreateMatchTable
 taXpress unit added (expression evaluation)
 ResultBits renamed MatchBits
 TLogicType renamed TSearchLogic (lt prefixes changed to
sl)
 TUpperCaseFunc renamed TStringFunc
 Implemented Delphi 2.0x memory fragmentation solution

TMakeDictionary not compressing indexes fixed
FindLast bug fixed

07/08/96 Version 1.00 Initial release

Purchase Agreement
Terms of License Agreement
The Rubicon programs and documentation are the property of Tamarack Associates
and are protected by United States Copyright Law, Title 17 U.S. Code, are licensed for
use by one person only on as many computers as that person uses.
Where a group of programmers are working together on a project that makes use of
Rubicon, we expect that a copy of the software and documentation will be purchased for
each member of the group. Contact Tamarack Associates for volume discounts.
You may duplicate the Rubicon programs and documentation files for backup use only.
You may distribute without further licenses or run time fees applications that make use
of Rubicon. You may not distribute or duplicate any documentation, source code, or
DCU files other than described above.

Limited Warranty
TAMARACK ASSOCIATES MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR
IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT WILL TAMARACK ASSOCIATES BE LIABLE TO YOU OR ANY THIRD
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF OR INABILITY TO USE THE PROGRAM
OR MANUAL.
By using this product, you agree to this. If you do not agree, immediately return this
product for refund.

Development Environment
Rubicon was developed with Delphi 1.02 and 2.01 running under WFWG 3.11, Win95,
and NT 3.51 with 40MB of RAM using Paradox tables. SysTools 1.0.
Rubicon for Paradox was also developed using Paradox for Windows 5.0, 7/16, and
7/32.

TurboPower SysTools
Rubicon relies on several routines that are part of TurboPower's SysTools product.
Tamarack Associates has a license to redistribute certain SysTools DCUs with Rubicon
for Delphi, but cannot redistribute the source code.
If you own SysTools 1.01 or higher, you should enable the HaveSysTools option in
TARUBICN.INC. It is highly recommended that you also disable the ThreadSafe option
in STDEFINE.INC for performance reasons.
Note: SysTools 1.00 should not be used with Rubicon because there is a bug in
TStDictionary.
For more information about TurboPower products, call 1-800-333-4160, GO
TURBOPOWER on CompuServe, or visit www.tpower.com.
Special thanks to Kim Kokkonen for his help on the RLE assembler code!

Trademarks
Rubicon is a trademark of Tamarack Associates
Borland and Paradox are trademarks of Borland International.
SysTools is a trademark of TurboPower Software.

Technical Support
Questions, bug reports and suggestions may be directed to:

Tamarack Associates
CompuServe 72365,46
Internet tech@tamaracka.com
(415) 322-2827 (Voice & Fax)

Delphi Files
Trial run version includes:

BOLTS.ICO Icon file
COMPARE.DPR Utility program
DEMO.DPR Demonstration program
PREVINST.PAS 16/32 bit previous instance code used by Demo
README.TXT Brief installation instructions
README.1xx Brief description of version changes
RBABOUT.PAS/DFMDemo form
RBCOMPAR.PAS/DFM Compare form
RBDBGRID.PAS/DFM Demo form
RBDBMEMO.PAS/DFM Demo form
RBLINK.PAS/DFM Demo form
RBMAIN.PAS/DFM Demo form
RBPHASE.PAS/DFMTMakeProgress, TMakeProgressForm
RBUPDATE.PAS/DFM TUpdateStats TUpdateStatsForm,

TUpdateTable
RBVERIFY.PAS/DFM Verify form
RUBICN16.RES 16 bit resource file
RUBICN32.RES 32 bit resource file
RUBICON.DOC This file
RUBICON.HLP Help file
RUBICON.KWF Help keyword file
RUBICON.PAS Source code for registering Rubicon
ST16TR.ZIP SysTools 16 bit DCUs (Trial Run only)
 STBASE.DCU
 STBITS.DCU
 STCONST.DCU
 STCONST.R16
 STDICT.DCU
ST32TR.ZIP SysTools 32 bit DCUs (Trial Run only)
 STBASE.DCU
 STBITS.DCU
 STCONST.DCU
 STCONST.R32
 STDICT.DCU
TARCONST.PAS Rubicon constants
TAREDIT.PAS/DFMRubicon property editors
TARUBICN.INC Include file
TARUBICN.INT TARUBICN.PAS interface section (Trial Run

only)
TARB16TR.ZIP 16 bit trial run DCUs (Trial Run only)

 TAXPRESS.DCU
 TALINK.DCU
 TARLE.DCU
 TARUBICN.DCU

 TATOOLS.DCU
TARB32TR.ZIP 32 bit trial run DCUs (Trial Run only)
 TAXPRESS.DCU
 TALINK.DCU
 TARLE.DCU
 TARUBICN.DCU
 TATOOLS.DCU
VERIFY.DPR Utility program
WILDCARD.PAS Wildcard matching unit

Registered version includes these additional files:
ST16.ZIP SysTools 16 bit DCUs (replaces ST16TR.ZIP)
ST32.ZIP SysTools 32 bit DCUs (replaces ST32TR.ZIP)
TAXPRESS.PAS Expression evaluation source code
TALINK.PAS Source code
TARLE.PAS Run Length Encoding source code
TARUBICN.PAS Component source code
TARUBICN.RC Resource file
TATOOLS.PAS Extensions to SysTools

Paradox Files
CODEVIEW.FSL Code viewer utility
FILESS16.ZIP 16 bit forms and library
 EXMAKE.FSL Example of TMakeDictionary
 EXNAV.FSL Example of navigating with TSearchDictionary
 EXSEARCH.FSL Example of TSearchDictionary
 EXUPDATE.FSL Example of TUpdateDictionary
 MAKEPROG.FSL Make progress form
 RBCNB16.DLL 16 bit Rubicon DLL
 RBCNDEMO.FSL Comprehensive demo program (Paradox 7 only)

 RUBICON.LSL Rubicon library
 TEMPLATE.FSL Template form (16 bit only)
FILES32.ZIP Same as FILSE16.ZIP, 32 bit versions, plus
 RBCNB32.DLL 32 bit Rubicon DLL (replaces RBCNB16.DLL)
 RBCNMAKE.LSL Paradox 7 32 Make library
 RBCNSRCH.LSL Paradox 7 32 Search library
 RBCNUPDT.LSL Paradox 7 32 Update library
MESSAGES.DB/MB Sample table
README.TXT Brief installation instructions
README.1xx Brief description of version changes
RUBICON.DOC This file
RUBICON.HLP Help file
_SOURCE.DB/MB Used by CodeView

Order Form
Rubicon for Delphi/Paradox 1.x

Tamarack Associates
868 Lincoln Avenue

Palo Alto, CA 94301 USA
415-322-2827 (Voice & Fax*)

sales@tamaracka.com
CompuServe 72365,46

Name ____________________________
Company ____________________________

Address ____________________________
City ____________________________

State ____________________________
Country ____________________________

Zip/Postal Code ____________________________
Email ____________________________

Phone ____________________________

Credit Card ___ MasterCard ___ Visa
Card Number ___________________________

Expiration Date ___________________________
Number of copies _____ 3.5" ___ 5.25" ___

Version _____ Delphi ____ Paradox ____ Both
Price per copy $99.00 U.S. ($149 U.S. for both)

Subtotal _____
Sales tax _____ (California residents only)

Shipping & handling _____ (see below)
Total _____

How did you hear about Rubicon? ____________________________________
Shipping & handling: CIS/Internet - none; North America - $5; outside North America -

$10.

Rubicon may also be registered through CompuServe SWREG.
SWREG ID: 11536 for Delphi, 13217 for Paradox.
Please read Purchase Agreement before ordering.

*The fax machine can take as long as 45 seconds to answer. Set your fax accordingly.

Properties
AltMemMgr BlobBytesWritten BlobFieldSize
CacheCount DataSource DataTypes
DiskInserts FieldNames FieldTypes
FileCompression IndexFieldName IndexMode
IndexRange KeyViolName LikeFieldSize
Likeness MaxMemUsed MemCompression
MemoryLimit MemoryUsage MinOrdIndex
MinWordLen OmitList RecordLimit
RecordNo State StrictChecking
UpperCase WordDelims WordFieldSize
WordsTable

Methods
Execute
LoadOmitsFromTable
ProcessField
ProcessList
ProcessPChar
ProcessRecord
ProcessWord
ResetStats

Events
OnPhaseOne
OnPhaseTwo
OnProcessField

Tasks
16 vs. 32 Bit Memory Issues
Delphi 2.0 Memory Fragmenation
Delphi Installation
Expression Evaluation
Index Modes
Performance Optimization
Search Strategies
Working with Huge Tables
Working with Link, Lookup, or Normalized Tables
Using the Components

See Also
Common Questions
Definitions
Delphi Files
Demo Program
How to Order
Introduction
Technical Support
TMakeDictionary
Troubleshooting
TSearchDictionary
TUpdateDictionary
Utility Programs

Properties
AnyChar BlobBytesRead Builder
CacheCount CacheReads DataSource
DataTypes DiskReads ErrorPos
Execute FieldNames FieldTypes
IndexFieldName IndexMode IndexRange
Likeness MatchCount MatchTable
MaxMemUsed MemCompression MemoryLimit
MemoryUsage MinIndex MinOrdIndex
NearWord OmitList OneChar
RankMode RecordCount RecordLimit
MatchBits SearchFor SearchLogic
SearchMode SourceReads State
StrictChecking SubFieldNames UpperCase
WordDelims WordsTable

Methods
CreateMatchTable FindXxxx
FlushCache LoadOmitsFromTable
Matches MatchingWords
NarrowSearch ProcessField
ProcessList ProcessPChar
ProcessRecord ProcessWord
ResetStats Search
WidenSearch

Events
OnProcessField
OnSearch

Properties
AltMemMgr BlobBytesRead BlobBytesWritten
Builder CacheCount CacheEdits
CacheInserts CacheReads DataSource
DataTypes DelayedWrites DiskDeletes
DiskEdits DiskInserts DiskReads
FieldNames FieldTypes FileCompression
IndexFieldName IndexMode IndexRange
Likeness MaxMemUsed MemCompression
MemoryLimit MemoryUsage MinOrdIndex
MinWordLen OmitList State
StrictChecking UnwrittenWords UpperCase
WordDelims WordsTable

Methods
AfterDelete
AfterPost
BatchAdd
BatchDelete
BeforeDelete
BeforeEdit
BeforeInsert
FlushCache
LoadOmitsFromTable
ProcessField
ProcessList
ProcessPChar
ProcessRecord
ProcessWord
ResetStats
WriteCache

Events
OnProcessField
OnWrite

